Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the calcium-dependent type 2 secretion pseudopilus

Abstract

Many Gram-negative bacteria use type 2 secretion systems (T2SSs) to secrete proteins involved in virulence and adaptation. Transport of folded proteins via T2SS nanomachines requires the assembly of inner membrane-anchored fibres called pseudopili. Although efficient pseudopilus assembly is essential for protein secretion, structure-based functional analyses are required to unravel the mechanistic link between these processes. Here, we report an atomic model for a T2SS pseudopilus from Klebsiella oxytoca, obtained by fitting the NMR structure of its calcium-bound subunit PulG into the ~5-Å-resolution cryo-electron microscopy reconstruction of assembled fibres. This structure reveals the comprehensive network of inter-subunit contacts and unexpected features, including a disordered central region of the PulG helical stem, and highly flexible C-terminal residues on the fibre surface. NMR, mutagenesis and functional analyses highlight the key role of calcium in PulG folding and stability. Fibre disassembly in the absence of calcium provides a basis for pseudopilus length control, essential for protein secretion, and supports the Archimedes screw model for the type 2 secretion mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calcium is required for PulG stability, pseudopilus assembly and stability.
Fig. 2: The effect of calcium on PulGp folding and identification of calcium-coordinating residues.
Fig. 3: NMR structure of PulGp in the calcium-bound state.
Fig. 4: Morphology of the Klebsiella T2SS pseudopilus PulGCC filament by cryoEM and reconstruction at ~5 Å resolution.
Fig. 5: Structure of the PulGCC pilus.

Similar content being viewed by others

References

  1. Berry, J. L. & Pelicic, V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Jarrell, K. F. & Albers, S. V. The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Thomassin, J. L., Santos Moreno, J., Guilvout, I., Tran Van Nhieu, G. & Francetic, O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol. Microbiol. 105, 211–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Cianciotto, N. P. & White, R. C. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun. 85, e00014-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sauvonnet, N., Vignon, G., Pugsley, A. P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221–2228 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korotkov, K. V. & Hol, W. G. Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat. Struct. Mol. Biol. 15, 462–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Cisneros, D. A., Bond, P. J., Pugsley, A. P., Campos, M. & Francetic, O. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J. 31, 1041–1053 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647–664 (2004).

    Article  PubMed  Google Scholar 

  10. Korotkov, K. V. et al. Calcium is essential for the major pseudopilin in the type 2 secretion system. J. Biol. Chem. 284, 25466–25470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Egelman, E. H. Cryo-EM of bacterial pili and archaeal flagellar filaments. Curr. Opin. Struct. Biol. 46, 31–37 (2017).

    Article  CAS  Google Scholar 

  12. Egelman, E. H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Nivaskumar, M. et al. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22, 685–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campos, M., Nilges, M., Cisneros, D. A. & Francetic, O. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc. Natl Acad. Sci. USA 107, 13081–13086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alphonse, S. et al. Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J. Struct. Biol. 169, 75–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, A. W. & Straley, S. C. YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J. Bacteriol. 180, 350–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, D. et al. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol. Microbiol. 92, 1092–1112 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. O’Brien, D. P. et al. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci. Rep. 5, 14223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bilecen, K. & Yildiz, F. H. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ. Microbiol. 11, 2015–2029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orans, J. et al. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility. Proc. Natl Acad. Sci. USA 107, 1065–1070 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Broder, U. N., Jaeger, T. & Jenal, U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat. Microbiol. 2, 16184 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Kolappan, S. et al. Structure of the Neisseria meningitidis type IV pilus. Nat. Commun. 7, 13015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Reardon, P. N. & Mueller, K. T. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J. Biol. Chem. 288, 29260–29266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santos-Moreno, J. et al. Polar N-terminal residues conserved in type 2 secretion pseudopilins determine subunit targeting and membrane extraction steps during fibre assembly. J. Mol. Biol. 429, 1746–1765 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Shevchik, V. E., Robert-Baudouy, J. & Condemine, G. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J. 16, 3007–3016 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones, H. E., Holland, I. B. & Campbell, A. K. Direct measurement of free Ca(2+) shows different regulation of Ca(2+) between the periplasm and the cytosol of Escherichia coli. Cell Calcium 32, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. East, A. et al. Structural basis of pullulanase membrane binding and secretion revealed by X-ray crystallography, molecular dynamics and biochemical analysis. Structure 24, 92–104 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  33. Schagger, H. Tricine–SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  PubMed  Google Scholar 

  34. Nivaskumar, M. et al. Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol. Microbiol. 101, 924–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Castilla, A. et al. 1H, 15N and 13C resonance assignments and secondary structure of PulG, the major pseudopilin from Klebsiella oxytoca type 2 secretion system. Biomol. NMR Assign. 11, 155–158 (2017).

  36. Wishart, D. S. et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rieping, W. et al. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, Y. & Bax, A. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J. Biomol. NMR 46, 199–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Schrödinger, L. The PyMOL Molecular Graphics System v.1.8. (Schrödinger, LLC, 2015).

  45. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Bhattacharya, A., Tejero, R. & Montelione, G. T. Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Dosset, P., Hus, J. C., Blackledge, M. & Marion, D. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wolff, N. et al. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J. Mol. Biol. 376, 517–525 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  51. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wriggers, W. Conventions and workflows for using Situs. Acta Crystallogr. D Biol. Crystallogr. 68, 344–351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Chapman, M. S., Trzynka, A. & Chapman, B. K. Atomic modeling of cryo-electron microscopy reconstructions – joint refinement of model and imaging parameters. J. Struct. Biol. 182, 10–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W378 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl Acad. Sci. USA 110, 15674–15679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chou, P. Y. & Fasman, G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 47, 45–148 (1978).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS), the French Agence Nationale de la Recherche (ANR-14-CE09-0004), the European Union FP7-IDEAS-ERC 294809 (to M. Nilges) and the NIH R35GM122510 (to E.H.E.). We thank L. Khoury for help in sample preparation, and the Plateforme de Biophysique Moléculaire of Institut Pasteur and B. Baron for assistance in circular dichroism experiments. We are grateful to M. Delepierre and D. Ladant for support and interest in this work. We acknowledge N. Morellet and financial support from the TGIR-RMN-THC Fr3050 CNRS.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: A.L.-C., J.-L.T., B.B., M. Nil., E.H.E., N.I.-P. and O.F. Performed the experiments: A.L.-C., J.-L.T., B.B., W.Z., X.Y., M. Niv. Analysed the data and wrote the manuscript: A.L.-C, J.-L.T., B.B., W.Z., M. Nil., E.H.E., N.I.-P. and O.F.

Corresponding authors

Correspondence to Nadia Izadi-Pruneyre or Olivera Francetic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–3,Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Castilla, A., Thomassin, JL., Bardiaux, B. et al. Structure of the calcium-dependent type 2 secretion pseudopilus. Nat Microbiol 2, 1686–1695 (2017). https://doi.org/10.1038/s41564-017-0041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0041-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing