Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gut-homing Δ42PD1+Vδ2 T cells promote innate mucosal damage via TLR4 during acute HIV type 1 infection

Abstract

The innate immune cells underlying mucosal inflammatory responses and damage during acute HIV-1 infection remain incompletely understood. Here, we report a Vδ2 subset of gut-homing γδ T cells with significantly upregulated Δ42PD1 (a PD1 isoform) in acute (~20%) HIV-1 patients compared to chronic HIV-1 patients (~11%) and healthy controls (~2%). The frequency of Δ42PD1+Vδ2 cells correlates positively with plasma levels of pro-inflammatory cytokines and fatty-acid-binding protein before detectable lipopolysaccharide in acute patients. The expression of Δ42PD1 can be induced by in vitro HIV-1 infection and is accompanied by high co-expression of gut-homing receptors CCR9/CD103. To investigate the role of Δ42PD1+Vδ2 cells in vivo, they were adoptively transferred into autologous humanized mice, resulting in small intestinal inflammatory damage, probably due to the interaction of Δ42PD1 with its cognate receptor Toll-like receptor 4 (TLR4). In addition, blockade of Δ42PD1 or TLR4 successfully reduced the cytokine effect induced by Δ42PD1+Vδ2 cells in vitro, as well as the mucosal pathological effect in humanized mice. Our findings have therefore uncovered a Δ42PD1–TLR4 pathway exhibited by virus-induced gut-homing Vδ2 cells that may contribute to innate immune activation and intestinal pathogenesis during acute HIV-1 infection. Δ42PD1+Vδ2 cells may serve as a target for the investigation of diseases with mucosal inflammation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Δ42PD1+Vδ2 cells are found in early HIV-1 infection and correlate with immune activation.
Fig. 2: HIV-1 infection induces Δ42PD1 expression on Vδ2 cells.
Fig. 3: Preferential migration of HIV-induced CD3+Vδ2+ cells to the intestines in humanized mice.
Fig. 4: Δ42PD1 functions via TLR4 for the induction of cytokine production.
Fig. 5: Direct interaction between Δ42PD1 and TLR4.
Fig. 6: HIV-induced Δ42PD1-expressing γδ T cells can induce robust cytokines from autologous DCs via Δ42PD1–TLR4.

Similar content being viewed by others

References

  1. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCarthy, N. E. et al. Proinflammatory Vδ2+ T cells populate the human intestinal mucosa and enhance IFN-γ production by colonic αβ T cells. J. Immunol. 191, 2752–2763 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. McCarthy, N. E. et al. Azathioprine therapy selectively ablates human Vδ2(+) T cells in Crohn’s disease. J. Clin. Invest. 125, 3215–3225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bjarnason, I. et al. Intestinal inflammation, ileal structure and function in HIV. AIDS 10, 1385–1391 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Batman, P. A. et al. Jejunal enteropathy associated with human immunodeficiency virus infection: quantitative histology. J. Clin. Pathol. 42, 275–281 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heise, C. et al. Primary acute simian immunodeficiency virus infection of intestinal lymphoid tissue is associated with gastrointestinal dysfunction. J. Infect. Dis. 169, 1116–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Kotler, D. P., Reka, S. & Clayton, F. Intestinal mucosal inflammation associated with human immunodeficiency virus infection. Dig. Dis. Sci. 38, 1119–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. McGowan, I. et al. Increased HIV-1 mucosal replication is associated with generalized mucosal cytokine activation. J. Acquir. Immune Defic. Syndr. 37, 1228–1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Olsson, J. et al. Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and β-chemokines. J. Infect. Dis. 182, 1625–1635 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Harouse, J. M. et al. Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 284, 816–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Autran, B. et al. T cell receptor γ/δ+ lymphocyte subsets during HIV infection. Clin. Exp. Immunol. 75, 206–210 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gan, Y. H., Pauza, C. D. & Malkovsky, M. γδ T cells in rhesus monkeys and their response to simian immunodeficiency virus (SIV) infection. Clin. Exp. Immunol. 102, 251–255 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poles, M. A. et al. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood T cells despite suppressive therapy. J. Virol. 77, 10456–10467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glatzel, A. et al. Patterns of chemokine receptor expression on peripheral blood γδ T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells. J. Immunol. 168, 4920–4929 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Li, H. & Pauza, C. D. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS. Blood 118, 5824–5831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hermier, F. et al. Decreased blood TcR γδ+ lymphocytes in AIDS and p24-antigenemic HIV-1-infected patients. Clin. Immunol. Immunopathol. 69, 248–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Kosub, D. A. et al. γδ T-cell functional responses differ after pathogenic human immunodeficiency virus and nonpathogenic simian immunodeficiency virus infections. J. Virol. 82, 1155–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Z. et al. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS ONE 9, e106064 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poccia, F. et al. Peripheral Vγ9/Vδ2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J. Immunol. 157, 449–461 (1996).

    CAS  PubMed  Google Scholar 

  21. Wallace, M. et al. Functional γδ T-lymphocyte defect associated with human immunodeficiency virus infections. Mol. Med. 3, 60–71 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cardone, M. et al. HIV-1-induced impairment of dendritic cell cross-talk with γδ T lymphocytes. J. Virol. 89, 4798–4808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cimini, E. et al. Primary and chronic HIV infection differently modulates mucosal Vδ1 and Vδ2 T-cells differentiation profile and effector functions. PLoS ONE 10, e0129771 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou, J. et al. Potentiating functional antigen-specific CD8+ T cell immunity by a novel PD1 isoform-based fusion DNA vaccine. Mol. Ther. 21, 1445–1455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, L. et al. Monoclonal antibodies specific to human Δ42PD1: a novel immunoregulator potentially involved in HIV-1 and tumor pathogenesis. MAbs 7, 620–629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stacey, A. R. et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol. 83, 3719–3733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. García, V. E. et al. IL-15 enhances the response of human γδ T cells to nonpetide microbial antigens. J. Immunol. 160, 4322–4329 (1998).

    PubMed  Google Scholar 

  29. Enders, P. J. et al. HIV-mediated γδ T cell depletion is specific for Vγ2+ cells expressing the Jγ1.2 segment. AIDS Res. Hum. Retroviruses 19, 21–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, P. S. et al. In vitro stimulation with a non-peptidic alkylphosphate expands cells expressing Vγ2-Jγ1.2/Vδ2 T-cell receptors. Immunology 104, 19–27 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hebbeler, A. M. et al. Failure to restore the Vγ2-Jγ1.2 repertoire in HIV-infected men receiving highly active antiretroviral therapy (HAART). Clin. Immunol. 128, 349–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, X. et al. Brain invasion by CD4+ T cells infected with a transmitted/founder HIV-1 during acute stage in humanized mice. J. Neuroimmune Pharmacol. 11, 572–583 (2016).

    Article  PubMed  Google Scholar 

  33. Abreu, M. T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Balazs, A. B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Im, E. et al. Elevated lipopolysaccharide in the colon evokes intestinal inflammation, aggravated in immune modulator-impaired mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G490–G497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Erridge, C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J. Leukoc. Biol. 87, 989–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Teghanemt, A. et al. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J. Biol. Chem. 283, 1257–1266 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, L. et al. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2.TLR4 ectodomain complexes. J. Biol. Chem. 287, 16346–16355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schromm, A. B. et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J. Exp. Med. 194, 79–88 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gruber, A. et al. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J. Biol. Chem. 279, 28475–28482 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Andersson, U. & Tracey, K. J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29, 139–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt, M. et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol. 11, 814–819 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Conti, L. et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated γδ T cells: role of CD86 and inflammatory cytokines. J. Immunol. 174, 252–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Scotet, E. et al. Bridging innate and adaptive immunity through γδ T-dendritic cell crosstalk. Front. Biosci. 13, 6872–6885 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Mancek-Keber, M. & Jerala, R. Postulates for validating TLR4 agonists. Eur. J. Immunol. 45, 356–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Rakoff-Nahoum, S. et al. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z. et al. CD4+ lymphocytopenia in acute infection of Asian macaques by a vaginally transmissible subtype-C, CCR5-tropic simian/human immunodeficiency virus (SHIV). J. Acquir. Immune Defic. Syndr. 30, 133–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mancek-Keber, M. et al. Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Sci. Signal. 8, ra60 (2015).

    Article  PubMed  Google Scholar 

  54. Zidar, D. A. et al. Oxidized LDL levels are increased in HIV infection and may drive monocyte activation. J. Acquir. Immune Defic. Syndr. 69, 154–160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brandes, M. et al. Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc. Natl Acad. Sci. USA 106, 2307–2312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poonia, B. et al. γδ T cells are ADCC effectors in elite HIV controllers. Retrovirology 7(Suppl 1), O7 (2010).

    Article  PubMed Central  Google Scholar 

  57. González-Navajas, J. M. et al. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J. Clin. Invest. 120, 570–581 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jin, B. et al. The effects of TLR activation on T-cell development and differentiation. Clin. Dev. Immunol. 2012, 836485 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tu, W. et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a γδ T cell population in humanized mice. J. Exp. Med. 208, 1511–1522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiang, Z. et al. Targeted activation of human Vγ9Vδ2-T cells controls Epstein–Barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26, 565–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Kang, Y. et al. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J. Biol. Chem. 287, 16499–16509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheung, A. K. L. et al. The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency. Blood 114, 4128–4137 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ghosh, J. K., Romanow, W. J. & Murre, C. Induction of a diverse T cell receptor γ/δ repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J. Exp. Med. 193, 769–776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Dongen, J. J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317 (2003).

    Article  PubMed  Google Scholar 

  65. Lefranc, M. P. et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413–D422 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Feinman, R. et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia–reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G833–G843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karpova, T. & McNally, J. G. Detecting protein–protein interactions with CFP-YFP FRET by acceptor photobleaching. Curr. Protoc. Cytom. 12, 12.7.1–12.7.11 (2007).

    Google Scholar 

  70. Feige, J. N. et al. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Tech. 68, 51–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Nicoludis, J. M. et al. Structure and sequence analyses of clustered protocadherins reveal antiparallel interactions that mediate homophilic specificity. Structure 23, 2087–2098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kozakov, D. et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Miyake for providing the MD2 plasmid, K.H. Kok for CFP, YFP and NF-κB-luciferase plasmids and C. Cheng-Mayer for critical discussions. The authors thank L. Liu for technical advice with immunohistochemical staining. The authors acknowledge the Faculty Core Facility of the LKS Faculty of Medicine, HKU, for technical assistance with confocal microscopy. This work was supported by research grants from the Hong Kong Research Grant Council (RGC: HKU5/CRF/13G, RGC17103514, RGC17122915 and A-HKU709/14 to Z.C.); the Health and Medical Research Fund (HMRF: 14130582 to Z.C., 15140372 to A.K.L.C.); the San-Ming Project of Medicine in Shenzhen (to Z.C. and H.Wa.); the National Science and Technology Major Project (2012ZX10001-009-001-001 to Z.C., 2012ZX1000-1006-001-009 to H.S.) Beijing Key Laboratory of HIV/AIDS Research (BZ0089 to H.Wu) and Beijing Municipal of Science and Technology Major Project (D161100000416003 to H.Wu) and the University Development Fund of the University of Hong Kong and Li Ka Shing Faculty of Medicine Matching Fund to AIDS Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.K.L.C. and Z.C. designed experiments, analysed data and wrote the manuscript. A.K.L.C., Y.H., H.-y.K., M.C., Y.M., X.W., K.-s.L., H.-k.K, T.C.K.L., J.Z. and B.K.L. performed experiments. J.L. and L.C. generated the Δ42PD1-specific antibodies. Q.P., X.L., M.A., H.Wa., H.S., B.Z. and H.Wu provided HIV patient samples. A.X. and K.-Y.Y. provided critical comments and materials.

Corresponding author

Correspondence to Zhiwei Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Table 1 and Supplementary Figures 1–22

Life sciences reporting summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, A.K.L., Kwok, Hy., Huang, Y. et al. Gut-homing Δ42PD1+Vδ2 T cells promote innate mucosal damage via TLR4 during acute HIV type 1 infection. Nat Microbiol 2, 1389–1402 (2017). https://doi.org/10.1038/s41564-017-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0006-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing