Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pressure-controlled interlayer magnetism in atomically thin CrI3

Abstract

Stacking order can influence the physical properties of two-dimensional van der Waals materials1,2. Here we applied hydrostatic pressure up to 2 GPa to modify the stacking order in the van der Waals magnetic insulator CrI3. We observed an irreversible interlayer antiferromagnetic-to-ferromagnetic transition in atomically thin CrI3 by magnetic circular dichroism and electron tunnelling measurements. The effect was accompanied by a monoclinic-to-rhombohedral stacking-order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer antiferromagnetic coupling energy can be tuned up by nearly 100% with pressure. Our experiment reveals the interlayer ferromagnetic ground state, which is established in bulk CrI3 but not observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations3,4,5,6,7,8 and suggests a route towards nanoscale magnetic textures by moiré engineering3,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of CrI3.
Fig. 2: Pressure-induced interlayer AF–FM transition in atomically thin CrI3.
Fig. 3: Pressure-induced structural phase transition in atomically thin CrI3.
Fig. 4: Spin-filtering effect in atomically thin CrI3 as a function of pressure.

Similar content being viewed by others

Data availability

The data supporting the plots within this paper and other findings of this study are available from the corresponding authors upon request.

References

  1. Castro Neto, A. H., Guinea, F., Pere, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  2. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    Article  Google Scholar 

  3. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article  CAS  Google Scholar 

  4. Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    Article  CAS  Google Scholar 

  5. Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).

    Article  Google Scholar 

  6. Jang, S. W., Jeong, M. Y., Yoon, H., Ryee, S. & Han, M. J. Microscopic understanding of magnetic interactions in bilayer CrI3. Phys. Rev. Mater. 3, 031001 (2019).

    Article  CAS  Google Scholar 

  7. Lei, C. et al. Magnetoelectric response of antiferromagnetic van der Waals bilayers. Preprint at https://arxiv.org/abs/1902.06418 (2019).

  8. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  Google Scholar 

  9. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    Article  CAS  Google Scholar 

  10. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  CAS  Google Scholar 

  11. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  CAS  Google Scholar 

  12. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  CAS  Google Scholar 

  13. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  14. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  15. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  CAS  Google Scholar 

  16. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  CAS  Google Scholar 

  17. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  CAS  Google Scholar 

  18. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  CAS  Google Scholar 

  19. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  CAS  Google Scholar 

  20. Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    Article  CAS  Google Scholar 

  21. Song, T. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    Article  Google Scholar 

  22. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Spin transistor built on 2D van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).

    Article  Google Scholar 

  23. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    Article  CAS  Google Scholar 

  24. Sun, Z. et al. Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer. Nature 572, 497–501 (2019).

    Article  CAS  Google Scholar 

  25. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article  CAS  Google Scholar 

  26. Djurdjić-Mijin, S. et al. Lattice dynamics and phase transition in CrI3 single crystals. Phys. Rev. B 98, 104307 (2018).

    Article  Google Scholar 

  27. Klein, D. R. et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. Preprint at https://arxiv.org/abs/1903.00002 (2019).

  28. Larson, D. T. & Kaxiras, E. Raman spectrum of CrI3: an ab initio study. Phys. Rev. B 98, 085406 (2018).

    Article  CAS  Google Scholar 

  29. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Preprint at https://arxiv.org/abs/1905.10860 (2019).

  30. Jung, J., Raoux, A., Qiao, Z. & MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 89, 205414 (2014).

    Article  Google Scholar 

  31. Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    Article  CAS  Google Scholar 

  32. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  33. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article  CAS  Google Scholar 

  34. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  Google Scholar 

  35. Kim, J. S. et al. Towards band structure and band offset engineering of monolayer Mo(1-x)W(x)S2 via Strain. 2D Mater. 5, 015008 (2018).

    Article  Google Scholar 

  36. Eremets, M. High Pressure Experimental Methods (Oxford Univ.ersity Press, Oxford, 1996).

  37. Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Article  Google Scholar 

  38. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Article  Google Scholar 

  39. Du, L. et al. 2D proximate quantum spin liquid state in atomic-thin α-RuCl3. 2D Mater. 6, 015014 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Graf and K. Huang for fruitful discussions on high-pressure cell operation, and G. H. Olsen and Z. He on density functional theory calculations. This work was supported by the US Army Research Office (ARO) under award W911NF-17-1-0605 (high-pressure cell set-up), the Office of Naval Research (ONR) under award N00014-18-1-2368 (device fabrication) and the Center for Emergent Materials, an NSF MRSEC under award number DMR-1420451 (bulk CrI3 crystal growth and optical measurements). This work was also partially supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program under DMR-1719875 (first principles calculations and transport measurements). The growth of hBN crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan, and the CREST(JPMJCR15F3), JST. D.W. gratefully acknowledges the financial support by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under the fellowship number WE6480/1. K.F.M. acknowledges support from a David and Lucille Packard Fellowship and a Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.L., S.J., K.F.M. and J.S. designed the study. T.L. developed the high-pressure cell set-up. T.L. and S.J. fabricated the devices and performed the measurements with the assistance of Z.W. and Y.X. N.S. and C.J.F. performed the first principles calculations. D.W. and J.E.G. grew the bulk CrI3 crystals and K.W. and T.T. grew the bulk hBN crystals. T.L., K.F.M. and J.S. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kin Fai Mak or Jie Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Notes 1–5, References 1–11 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Jiang, S., Sivadas, N. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019). https://doi.org/10.1038/s41563-019-0506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0506-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing