Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy

Abstract

Non-coplanar spin textures with scalar spin chirality can generate an effective magnetic field that deflects the motion of charge carriers, resulting in a topological Hall effect (THE)1,2,3. However, spin chirality fluctuations in two-dimensional ferromagnets with perpendicular magnetic anisotropy have not been considered so far. Here, we report evidence of spin chirality fluctuations by probing the THE above the Curie temperature in two different ferromagnetic ultra-thin films, SrRuO3 and V-doped Sb2Te3. The temperature, magnetic field, thickness and carrier-type dependence of the THE signal, along with Monte Carlo simulations, suggest that spin chirality fluctuations are a common phenomenon in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Our results open a path for exploring spin chirality with topological Hall transport in two-dimensional magnets and beyond4,5,6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scalar spin chirality and topological Hall effect in SrRuO3 film.
Fig. 2: Extracting the THE signal (\({\rho }_{yx}^{{\tt{T}}}\)) in SRO films.
Fig. 3: TH dependence of THE (\({\rho}_{yx}^{\tt {T}}\)) in SRO films and the effective DMIs (Deff).
Fig. 4: THE (\({\rho}_{yx}^{\tt{T}}\)) of ST-capped VST films.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code for the MC simulations is available from M.W.D. and D.X. on reasonable request.

References

  1. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).

    Article  CAS  Google Scholar 

  2. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  CAS  Google Scholar 

  3. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  4. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  CAS  Google Scholar 

  5. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  CAS  Google Scholar 

  6. Deng, Y. J. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  7. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  CAS  Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  9. Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of Skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).

    Article  Google Scholar 

  10. Kanazawa, N. et al. Large topological hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    Article  CAS  Google Scholar 

  11. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

    Article  CAS  Google Scholar 

  12. Matl, P. et al. Hall effect of the colossal magnetoresistance manganite La1−xCaxMnO3. Phys. Rev. B 57, 10248–10251 (1998).

    Article  CAS  Google Scholar 

  13. Ye, J. W. et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

    Article  CAS  Google Scholar 

  14. Chun, S. H., Salamon, M. B., Lyanda-Geller, Y., Goldbart, P. M. & Han, P. D. Magnetotransport in manganites and the role of quantal phases: theory and experiment. Phys. Rev. Lett. 84, 757–760 (2000).

    Article  CAS  Google Scholar 

  15. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    Article  CAS  Google Scholar 

  16. Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article  CAS  Google Scholar 

  17. Thomas, S. et al. Localized control of Curie temperature in perovskite oxide film by capping-layer-induced octahedral distortion. Phys. Rev. Lett. 119, 177203 (2017).

    Article  CAS  Google Scholar 

  18. Klein, L. et al. Transport and magnetization in the badly metallic itinerant ferromagnet SrRuO3. J. Phys. Condens. Matter 8, 10111–10126 (1996).

    Article  CAS  Google Scholar 

  19. Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    Article  CAS  Google Scholar 

  20. Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Science Adv. 2, e1600304 (2016).

    Article  Google Scholar 

  21. Liu, C. et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator. Phys. Rev. Lett. 119, 176809 (2017).

    Article  Google Scholar 

  22. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–96 (2003).

    Article  CAS  Google Scholar 

  23. Hou, W.-T., Yu, J.-X., Daly, M. & Zang, J. Thermal driven topology in chiral magnets. Phys. Rev. B 96, 140403(R) (2017).

    Article  Google Scholar 

  24. Böttcher, M., Heinze, S., Egorov, S., Sinova, J. & Dupe, B. B-T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo. New J. Phys. 20, 103014 (2018).

    Article  Google Scholar 

  25. Hellwig, O., Berger, A., Kortright, J. B. & Fullerton, E. E. Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. J. Mag. Mag. Mater. 319, 13–55 (2007).

    Article  CAS  Google Scholar 

  26. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  27. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  28. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  Google Scholar 

  29. Hyun, S. & Char, K. Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films. Appl. Phys. Lett. 79, 254 (2001).

    Article  CAS  Google Scholar 

  30. Berg, B. & Luescher, M. Definition and statistical distributions of a topological number in the lattice O(3) σ-model. Nucl. Phys. B 190, 412–424 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Swendsen for many useful discussions on MC simulations. The work at Rutgers was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under award no. DE-SC0018153. The work at CMU was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under award no. DE-SC0012509. The work at UMD was supported under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, award no. 70NANB14H209, through the University of Maryland. The work at U. Twente was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no. 13HTSM01. The work at Penn State was supported by ARO Young Investigator Program award no. W911NF1810198. C.-Z.C. acknowledges support of an Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

W.Wu conceived and supervised the project. Z.L., J.W., G.K. and G.R. synthesized the SRO samples and performed X-ray diffraction. Y.Z. and C.-Z.C. synthesized the VST samples. W.Wang performed the magnetotransport experiments and analysed the data. M.W.D. and D.X. performed the MC simulations. W.Wang, W.Wu, M.W.D. and D.X. wrote the manuscript. All authors discussed the data and contributed to the manuscript.

Corresponding author

Correspondence to Weida Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Supplementary Notes A–O and supplementary refs. 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Daniels, M.W., Liao, Z. et al. Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Nat. Mater. 18, 1054–1059 (2019). https://doi.org/10.1038/s41563-019-0454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0454-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing