Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active particles sense micromechanical properties of glasses

Abstract

Understanding the mechanical properties of glasses is a great scientific challenge. A powerful technique to study the material response on a microscopic scale is microrheology, in which one analyses the translational dynamics of an externally driven probe particle. Here we show that the translational and rotational dynamics of a self-propelled probe particle with an unconstrained orientational motion can be used to gather information about the mechanical properties of a colloidal glassy system. We find that its rotational diffusion coefficient continuously increases towards the glass transition and drops down in the glassy state. Such unexpected behaviour demonstrates a strong coupling mechanism between the orientation of the active probe particle and the glassy structure, which can be well described by a simple rheological model. Our results suggest that active probe particles may be useful for the micromechanical characterization of complex materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: APP dynamics within a dense binary colloidal suspension.
Fig. 2: Rotational APP dynamics.
Fig. 3: Mechanical coupling between APP and next neighbours.
Fig. 4: Mechanical model of an APP within a viscoelastic environment.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  CAS  Google Scholar 

  2. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).

  3. Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep. Prog. Phys. 75, 066501 (2012).

    Article  Google Scholar 

  4. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  5. Brambilla, G. et al. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett. 102, 085703 (2009).

    Article  CAS  Google Scholar 

  6. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat. Phys. 2, 268–274 (2006).

    Article  CAS  Google Scholar 

  7. Candelier, R. et al. Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid. Phys. Rev. Lett. 105, 135702 (2010).

    Article  CAS  Google Scholar 

  8. Spaepen, F. Homogeneous flow of metallic glasses: a free volume perspective. Scr. Mater. 54, 363–367 (2006).

    Article  CAS  Google Scholar 

  9. Cubuk, E. D. et al. Structure–property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).

    Article  CAS  Google Scholar 

  10. Gokhale, S., Hima Nagamanasa, K., Ganapathy, R. & Sood, A. K. Growing dynamical facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 4685 (2014).

    Article  CAS  Google Scholar 

  11. Zylberg, J., Lerner, E., Bar-Sinai, Y. & Bouchbinder, E. Local thermal energy as a structural indicator in glasses. Proc. Natl Acad. Sci. USA 114, 7289–7294 (2017).

    Article  CAS  Google Scholar 

  12. Squires, T. M. & Brady, J. F. A simple paradigm for active and nonlinear microrheology. Phys. Fluids 17, 073101 (2005).

    Article  Google Scholar 

  13. Shore, K. A. & Alan Shore, K. Microrheology, by E. M. Furst and T. M. Squires. Contemp. Phys. 59, 222–223 (2018).

    Article  Google Scholar 

  14. Habdas, P., Schaar, D., Levitt, A. C. & Weeks, E. R. Forced motion of a probe particle near the colloidal glass transition. Europhys. Lett. 67, 477–483 (2004).

    Article  CAS  Google Scholar 

  15. Winter, D., Horbach, J., Virnau, P. & Binder, K. Active nonlinear microrheology in a glass-forming Yukawa fluid. Phys. Rev. Lett. 108, 028303 (2012).

    Article  CAS  Google Scholar 

  16. Wilson, L. G., Harrison, A. W., Poon, W. C. K. & Puertas, A. M. Microrheology and the fluctuation theorem in dense colloids. Europhys. Lett. 93, 58007 (2011).

    Article  Google Scholar 

  17. Gruber, M., Abade, G. C., Puertas, A. M. & Fuchs, M. Active microrheology in a colloidal glass. Phys. Rev. E 94, 042602 (2016).

    Article  CAS  Google Scholar 

  18. Puertas, A. M. & Voigtmann, T. Microrheology of colloidal systems. J. Phys. Condens. Matter 26, 243101 (2014).

    Article  CAS  Google Scholar 

  19. Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    Article  Google Scholar 

  20. Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of critical Casimir forces. Nature 451, 172–175 (2008).

    Article  CAS  Google Scholar 

  21. Gomez-Solano, J. R. et al. Tuning the motility and directionality of self-propelled colloids. Sci. Rep. 7, 14891 (2017).

    Article  Google Scholar 

  22. Buttinoni, I., Volpe, G., Kümmel, F., Volpe, G. & Bechinger, C. Active Brownian motion tunable by light. J. Phys. Condens. Matter 24, 284129 (2012).

    Article  Google Scholar 

  23. Edmond, K. V., Elsesser, M. T., Hunter, G. L., Pine, D. J. & Weeks, E. R. Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proc. Natl Acad. Sci. USA 109, 17891–17896 (2012).

    Article  CAS  Google Scholar 

  24. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  25. van Megen, W., Mortensen, T. C., Williams, S. R. & Müller, J. Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys. Rev. E 58, 6073–6085 (1998).

    Article  Google Scholar 

  26. Brady, J. F. Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216–259 (2010).

    Article  Google Scholar 

  27. Deshpande, A. P., Murali Krishnan, J. & Kumar, S. Rheology of Complex Fluids (Springer, 2010).

  28. Raikher, Y. L., Rusakov, V. V. & Perzynski, R. Brownian motion in a viscoelastic medium modelled by a Jeffreys fluid. Soft Matter 9, 10857–10865 (2013).

    Article  CAS  Google Scholar 

  29. Yan, W. & Brady, J. F. The swim force as a body force. Soft Matter 11, 6235–6244 (2015).

    Article  CAS  Google Scholar 

  30. Ke, H. B., Zeng, J. F., Liu, C. T. & Yang, Y. Structure heterogeneity in metallic glass: modeling and experiment. J. Mater. Sci. Technol. 30, 560–565 (2014).

    Article  Google Scholar 

  31. Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

    Article  Google Scholar 

  32. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

    Article  CAS  Google Scholar 

  33. Fuller, G. G. & Vermant, J. Complex fluid–fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Eng. 3, 519–543 (2012).

    Article  CAS  Google Scholar 

  34. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  CAS  Google Scholar 

  35. Ni, R., Cohen Stuart, M. A. & Dijkstra, M. Pushing the glass transition towards random close packing using self-propelled hard spheres. Nat. Commun. 4, 2704 (2013).

    Article  Google Scholar 

  36. Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 112, 220602 (2014).

    Article  Google Scholar 

  37. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114, 018301 (2015).

    Article  Google Scholar 

  38. Ni, R., Cohen Stuart, M. A., Dijkstra, M. & Bolhuis, P. G. Crystallizing hard-sphere glasses by doping with active particles. Soft Matter 10, 6609–6613 (2014).

    Article  CAS  Google Scholar 

  39. Lauga, E. Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104 (2007).

    Article  Google Scholar 

  40. Bi, D. & Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).

    Google Scholar 

  41. Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16, 496–506 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with Th. Voigtmann, M. Fuchs, D. Levis and J. Berner. We thank H.-J. Kümmerer and C. Mayer for their technical support. C.B. acknowledges financial support from the German Research Foundation (DFG) through the priority programme SPP 1726 on microswimmers and by the ERC Advanced Grant ASCIR (grant no. 693683). J.R.G.-S. was supported by DFG grant no. GO 2797/1-1.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and C.B. designed the research and wrote the paper; C.L. carried out the experiments and analysed the data; J.R.G.-S. performed the simulations.

Corresponding author

Correspondence to Clemens Bechinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, C., Gomez-Solano, J.R. & Bechinger, C. Active particles sense micromechanical properties of glasses. Nat. Mater. 18, 1118–1123 (2019). https://doi.org/10.1038/s41563-019-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0446-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing