Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Scientific, technological and economic issues in metal printing and their solutions

3D printing is now widely used in aerospace, healthcare, energy, automotive and other industries. Metal printing, in particular, is the fastest growing sector, yet its development presents scientific, technological and economic challenges that must be understood and addressed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current status of metal printing.

SciePro/Science Photo Library (hip joint implant); GE Aviation (fuel nozzle). Adapted from ref. 8, Springer Nature Ltd (hydraulic valve); and ref. 9, Springer Nature Ltd (gas turbine blades)

Fig. 2: Challenges in metal printing.
Fig. 3: Cost competitiveness of metal printing.

References

  1. DebRoy, T. et al. Prog. Mater. Sci. 92, 112–224 (2018).

    Article  CAS  Google Scholar 

  2. Milewski, J. O. Additive Manufacturing of Metals (Springer, 2017).

  3. Roca, J. B., Vaishnav, P., Fuchs, E. R. H. & Morgan, M. G. Nat. Mater. 15, 815–818 (2016).

    Article  Google Scholar 

  4. Huang, Y., Leu, M. C., Mazumder, J. & Donmez, A. J. Manuf. Sci. Eng. 137, 014001 (2015).

    Article  Google Scholar 

  5. Frazier, W. E. J. Mater. Eng. Perform. 23, 1917–1928 (2014).

    Article  CAS  Google Scholar 

  6. Pollock, T. M. Nat. Mater. 15, 809–815 (2016).

    Article  CAS  Google Scholar 

  7. Verhoef, L. A., Budde, B. W., Chockalingam, C., Nodar, B. G. & van Wijk, J. M. Energy Policy 112, 349–360 (2018).

    Article  Google Scholar 

  8. Duda, T. & Venkat Raghavan, L. AI Soc. 33, 241–252 (2018).

    Article  Google Scholar 

  9. Murr, L. E. Metallogr. Microstr. Anal. 7, 103–132 (2018).

    Article  Google Scholar 

  10. Gu, D. D., Meiners, W., Wissenbach, K. & Poprawe, R. Int. Mater. Rev. 57, 133–164 (2012).

    Article  CAS  Google Scholar 

  11. Wohlers, T. T. et al. Wohlers Report 2018 (Wohlers Associates, 2018).

  12. Mukherjee, T. & DebRoy, T. Appl. Mater. Today 14, 59–65 (March, 2019).

  13. David, S. A. & DebRoy, T. Science 257, 497–502 (1992).

    Article  CAS  Google Scholar 

  14. Liu, L. et al. Mater. Today 21, 354–361 (2018).

    Article  CAS  Google Scholar 

  15. Mukherjee, T., Zuback, J. S., De, A. & DebRoy, T. Sci. Rep. 6, 19717 (2016).

    Article  CAS  Google Scholar 

  16. Thijs, L. et al. Acta Mater. 58, 3303–3312 (2010).

    Article  CAS  Google Scholar 

  17. Martin, J. H. et al. Nature 549, 365–369 (2017).

    Article  CAS  Google Scholar 

  18. Hitzler, L., Merkel, M., Hall, W. & Öchsner, A. Adv. Eng. Mater. 20, 1700658 (2018).

    Article  Google Scholar 

  19. Thompson, M. K. et al. CIRP Ann. 65, 737–760 (2016).

    Article  Google Scholar 

  20. Lefky, C. S., Zucker, B., Nassar, A. R., Simpson, T. W. & Hildreth, O. J. Acta Mater. 153, 1–7 (2018).

    Article  CAS  Google Scholar 

  21. Scime, L. & Beuth, J. Addit. Manuf. 25, 151–165 (2019).

    Article  CAS  Google Scholar 

  22. Berman, B. Bus. Horiz. 55, 155–162 (2012).

    Article  Google Scholar 

  23. Bours, J., Adzima, B., Gladwin, S., Cabral, J. & Mau, S. J. Ind. Ecol. 21, S25–S36 (2017).

    Article  CAS  Google Scholar 

  24. Stanislawska, M. et al. Microchem. J. 135, 1–9 (2017).

    Article  CAS  Google Scholar 

  25. Zeidler-Erdely, P. C., Erdely, A. & Antonini, J. M. J. Immunotoxicol. 9, 411–425 (2012).

    Article  Google Scholar 

  26. Baumers, M., Dickens, P., Tuck, C. & Hague, R. Technol. Forecast. Social Change. 102, 193–201 (2016).

    Article  Google Scholar 

  27. Hopkinson, N. & Dickens, P. Proc. Inst. Mech. Eng. C 217, 31–39 (2003).

    Article  Google Scholar 

  28. Atzeni, E. & Salmi, A. Int. J. Adv. Manufact. Technol. 62, 1147–1155 (2012).

    Article  Google Scholar 

  29. Piili, H., Happonen, A., Väistö, T. & Venkataramanan, V. Phys. Procedia 78, 388–396 (2015).

    Article  CAS  Google Scholar 

  30. Lindemann, C., Jahnke, U., Moi, M. & Koch, R. in Proc. 24th Annual Int. Solid Freeform Fabrication Symp (Laboratory for Freeform Fabrication, 2013).

  31. Pinkerton, A. J. Opt. Laser Technol. 78, 25–32 (2016).

    Article  Google Scholar 

  32. Gao, W. et al. Comput. Aided Des. 69, 65–89 (2015).

    Article  Google Scholar 

  33. Qi, Q. & Tao, F. IEEE Access 6, 3585–3593 (2018).

    Article  Google Scholar 

  34. LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  35. Hagedoorn, J., Link, A. N. & Vonortas, N. S. Res. Policy 29, 567–586 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. DebRoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DebRoy, T., Mukherjee, T., Milewski, J.O. et al. Scientific, technological and economic issues in metal printing and their solutions. Nat. Mater. 18, 1026–1032 (2019). https://doi.org/10.1038/s41563-019-0408-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0408-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing