Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury

Abstract

Drug-induced acute kidney injury (AKI) with a high morbidity and mortality is poorly diagnosed in hospitals and deficiently evaluated in drug discovery. Here, we report the development of molecular renal probes (MRPs) with high renal clearance efficiency for in vivo optical imaging of drug-induced AKI. MRPs specifically activate their near-infrared fluorescence or chemiluminescence signals towards the prodromal biomarkers of AKI including the superoxide anion, N-acetyl-β-d-glucosaminidase and caspase-3, enabling an example of longitudinal imaging of multiple molecular events in the kidneys of living mice. Importantly, they in situ report the sequential occurrence of oxidative stress, lysosomal damage and cellular apoptosis, which precedes clinical manifestation of AKI (decreased glomerular filtration). Such an active imaging mechanism allows MRPs to non-invasively detect the onset of cisplatin-induced AKI at least 36 h earlier than the existing imaging methods. MRPs can also act as exogenous tracers for optical urinalysis that outperforms typical clinical/preclinical assays, demonstrating their clinical promise for early diagnosis of AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and mechanisms of MRPs for molecular imaging and early detection of drug-induced AKI
Fig. 2: In vitro evaluation of the sensing capabilities of the MRPs.
Fig. 3: Renal clearance and in vivo stability studies of MRPs and the uncaged fluorophores.
Fig. 4: Real-time in vivo NIRF imaging of cisplatin-induced AKI.
Fig. 5: Real-time in vivo dual-channel imaging of cisplatin-induced AKI.
Fig. 6: In vitro diagnosis of drug-induced AKI in living mice.

Similar content being viewed by others

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the article and in the Supplementary Information, or from the corresponding author on reasonable request.

References

  1. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  Google Scholar 

  2. Abuelo, J. G. Normotensive ischemic acute renal failure. N. Engl. J. Med. 357, 797–805 (2007).

    Article  CAS  Google Scholar 

  3. Alobaidi, R., Basu, R. K., Goldstein, S. L. & Bagshaw, S. M. Sepsis-associated acute kidney injury. Semin. Nephrol. 35, 2–11 (2015).

    Article  CAS  Google Scholar 

  4. Kellum, J. A. & Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 14, 217–230 (2018).

    Article  Google Scholar 

  5. Soo, J. Y. C., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).

    Article  CAS  Google Scholar 

  6. Perazella, M. A. & Coca, S. G. Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nat. Rev. Nephrol. 9, 484–490 (2013).

    Article  CAS  Google Scholar 

  7. Darmon, M. et al. Diagnostic work-up and specific causes of acute kidney injury. Intensive Care Med. 43, 829–840 (2017).

    Article  Google Scholar 

  8. Wang, X. et al. Validation of creatinine-based estimates of GFR when evaluating risk factors in longitudinal studies of kidney disease. J. Am. Soc. Nephrol. 17, 2900–2909 (2006).

    Article  CAS  Google Scholar 

  9. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  Google Scholar 

  10. Willmann, J. K., Van Bruggen, N., Dinkelborg, L. M. & Gambhir, S. S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008).

    Article  CAS  Google Scholar 

  11. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  Google Scholar 

  12. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  13. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  Google Scholar 

  14. Grenier, N., Merville, P. & Combe, C. Radiologic imaging of the renal parenchyma structure and function. Nat. Rev. Nephrol. 12, 348–359 (2016).

    Article  Google Scholar 

  15. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  Google Scholar 

  16. So, M. K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).

    Article  CAS  Google Scholar 

  17. Smith, A. M., Mancini, M. C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  Google Scholar 

  18. Ning, X. et al. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 10, 602–607 (2011).

    Article  CAS  Google Scholar 

  19. Chan, J., Dodani, S. C. & Chang, C. J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4, 973–984 (2012).

    Article  CAS  Google Scholar 

  20. Park, S. M., Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).

    Article  CAS  Google Scholar 

  21. Vaidya, V. S. et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478–485 (2010).

    Article  CAS  Google Scholar 

  22. Yu, Y. et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol. 28, 470–477 (2010).

    Article  CAS  Google Scholar 

  23. Ozer, J. S. et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat. Biotechnol. 28, 486–494 (2010).

    Article  CAS  Google Scholar 

  24. Dieterle, F. et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 28, 463–469 (2010).

    Article  CAS  Google Scholar 

  25. Sureshbabu, A., Ryter, S. W. & Choi, M. E. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol. 4, 208–214 (2015).

    Article  CAS  Google Scholar 

  26. Ware, L. B., Fessel, J. P., May, A. K. & Roberts, L. J. 2nd Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock 36, 12–17 (2011).

    Article  CAS  Google Scholar 

  27. Naud, J. F. & Leblanc, M. Biomarkers in acute kidney injury. Kidney Int. 3, 115–125 (2008).

    CAS  Google Scholar 

  28. Miao, Q. et al. Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew. Chem. Int. Ed. 57, 1256–1260 (2018).

    Article  CAS  Google Scholar 

  29. Hananya, N., Eldar Boock, A., Bauer, C. R., Satchi Fainaro, R. & Shabat, D. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: turn-on chemiluminescence probes with color modulation for sensing and imaging. J. Am. Chem. Soc. 138, 13438–13446 (2016).

    Article  CAS  Google Scholar 

  30. Galgamuwa, R. et al. Dichloroacetate prevents cisplatin-induced nephrotoxicity without compromising cisplatin anticancer properties. J. Am. Soc. Nephrol. 27, 3331–3344 (2016).

    Article  CAS  Google Scholar 

  31. Otunctemur, A. et al. Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren. Fail. 36, 925–931 (2014).

    Article  Google Scholar 

  32. Erley, C. M. et al. Prevention of radiocontrast-induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. J. Am. Soc. Nephrol. 8, 1125–1132 (1997).

    CAS  Google Scholar 

  33. Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303–1353 (2012).

    Google Scholar 

  34. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016).

    Article  CAS  Google Scholar 

  35. Zhivotovsky, B., Samali, A., Gahm, A. & Orrenius, S. Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6, 644–651 (1999).

    Article  CAS  Google Scholar 

  36. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article  CAS  Google Scholar 

  37. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  38. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    Article  CAS  Google Scholar 

  39. Owens, E. A., Henary, M., El Fakhri, G. & Choi, H. S. Tissue-specific near-infrared fluorescence imaging. Acc. Chem. Res. 49, 1731–1740 (2016).

    Article  CAS  Google Scholar 

  40. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

    Article  CAS  Google Scholar 

  41. Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  Google Scholar 

  42. Shuhendler, A. J., Pu, K., Cui, L., Uetrecht, J. P. & Rao, J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).

    Article  CAS  Google Scholar 

  43. Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

    Article  CAS  Google Scholar 

  44. Forootan, S. S. et al. Real-time in vivo imaging reveals localised Nrf2 stress responses associated with direct and metabolism-dependent drug toxicity. Sci. Rep. 7, 16084 (2017).

    Article  Google Scholar 

  45. Asami, T., Soichiro, O., Kasahara, T. & Uchiyama, M. Asymptomatic primary hyper-N-acetyl-beta-D-glucosaminidaseuria: a new clinical entity? Pediatr. Nephrol. 17, 560–565 (2002).

    Article  Google Scholar 

  46. Hu, J. J. et al. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J. Am. Chem. Soc. 137, 6837–6843 (2015).

    Article  CAS  Google Scholar 

  47. Gu, K. et al. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc. 138, 5334–5340 (2016).

    Article  CAS  Google Scholar 

  48. Benson, R. C. & Kues, H. A. Absorption and fluorescence properties of cyanine dyes. J. Chem. Eng. Data 22, 379–383 (1977).

    Article  CAS  Google Scholar 

  49. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  CAS  Google Scholar 

  50. Dickey, D. T. et al. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemother. Pharmacol. 62, 235–241 (2008).

    Article  CAS  Google Scholar 

  51. Qi, Z. et al. Serial determination of glomerular filtration rate in conscious mice using FITC–inulin clearance. Am. J. Physiol. Renal Physiol. 286, F590–F596 (2004).

    Article  CAS  Google Scholar 

  52. Medicherla, S. et al. Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig. J. Inflamm. Res. 3, 9–16 (2010).

    Article  CAS  Google Scholar 

  53. Wang, W. et al. Prostacyclin in endotoxemia-induced acute kidney injury: cyclooxygenase inhibition and renal prostacyclin synthase transgenic mice. Am. J. Physiol. Renal Physiol. 293, F1131–F1136 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.P. thanks Nanyang Technological University (startup grant: M4081627) and Singapore Ministry of Education, Academic Research Fund Tier 1 (2017–T1–002–134–RG147/17) and Academic Research Fund Tier 2 (MOE2016–T2–1–098) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

K.P. and J.H. conceived and designed the study. J.H. and Q.M. performed the probe synthesis experiments. J.H. performed the in vivo experiments. J.H, J.L. and Y.L. performed the histology experiments. K.P. and J.H. contributed to the analysis and interpretation of the results and the writing of the manuscript.

Corresponding author

Correspondence to Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–38, Supplementary Tables 1–7 and Supplementary refs. 1–11.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, J., Lyu, Y. et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019). https://doi.org/10.1038/s41563-019-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0378-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research