Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state

Abstract

Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron–hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron–hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic structural and optical characteristics of FAPbBr3 perovskite NCs.
Fig. 2: Fine structure of the bright triplet and the dark singlet exciton for FAPbBr3 NCs.
Fig. 3: Signature of the dark–bright magnetic coupling in the PL decay of a single NC.
Fig. 4: Polarization analysis of the bright and dark exciton recombination lines.
Fig. 5: Temperature dependence of the PL spectrum and the PL decay a single NC.

Similar content being viewed by others

Data availability

All relevant data that support our experimental findings are available from the corresponding author upon reasonable request.

References

  1. Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    Article  CAS  Google Scholar 

  2. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  3. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  Google Scholar 

  4. Zhang, X. et al. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016).

    Article  CAS  Google Scholar 

  5. Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).

    Article  CAS  Google Scholar 

  6. Zhu, H. L. et al. Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 10, 6808–6815 (2016).

    Article  CAS  Google Scholar 

  7. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  CAS  Google Scholar 

  8. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  CAS  Google Scholar 

  9. Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    Article  CAS  Google Scholar 

  10. Xu, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138, 3761–3768 (2016).

    Article  CAS  Google Scholar 

  11. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).

    Article  CAS  Google Scholar 

  12. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  CAS  Google Scholar 

  13. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  CAS  Google Scholar 

  14. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  CAS  Google Scholar 

  15. Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    Article  CAS  Google Scholar 

  16. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

    Article  CAS  Google Scholar 

  17. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Article  CAS  Google Scholar 

  18. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).

    Article  CAS  Google Scholar 

  19. Even, J. Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid perovskites. J. Phys. Chem. Lett. 6, 2238–2242 (2015).

    Article  CAS  Google Scholar 

  20. Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    Article  CAS  Google Scholar 

  21. Nestoklon, M. O. et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B 97, 235304 (2018).

    Article  CAS  Google Scholar 

  22. Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    Article  Google Scholar 

  23. Ramade, J. et al. Exciton-phonon coupling in a CsPbBr3 single nanocrystal. Appl. Phys. Lett. 112, 072104 (2018).

    Article  Google Scholar 

  24. Ramade, J. et al. Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 10, 6393–6401 (2018).

    Article  CAS  Google Scholar 

  25. Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    Article  CAS  Google Scholar 

  26. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  CAS  Google Scholar 

  27. Sercel, P. C. & Efros, A. L. Band-edge exciton in CdSe and other II−VI and III−V compound semiconductor nanocrystals—revisited. Nano Lett. 18, 4061–4068 (2018).

    Article  CAS  Google Scholar 

  28. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  29. Canneson, D. et al. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 17, 6177–6183 (2017).

    Article  CAS  Google Scholar 

  30. Chen, L. et al. Composition-dependent energy splitting between bright and dark excitons in lead halide perovskite nanocrystals. Nano Lett. 18, 2074–2080 (2018).

    Article  CAS  Google Scholar 

  31. Xu, K., Vliem, J. F. & Meijerink, A. Long-lived dark exciton emission in Mn-doped CsPbCl3. J. Phys. Chem. C 123, 979–984 (2019).

    Article  CAS  Google Scholar 

  32. Dar, M. I. et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2, e1601156 (2016).

    Article  Google Scholar 

  33. Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Article  Google Scholar 

  34. Schueller, E. C. et al. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57, 695–701 (2017).

    Article  Google Scholar 

  35. Sinito, C. et al. Tailoring the exciton fine structure of cadmium selenide nanocrystals with shape anisotropy and magnetic field. ACS Nano 8, 11651–11656 (2014).

    Article  CAS  Google Scholar 

  36. Fernée, M. J., Tamarat, P. & Lounis, B. Spectroscopy of single nanocrystals. Chem. Soc. Rev. 43, 1311–1337 (2014).

    Article  Google Scholar 

  37. Sapori, D., Kepenekian, M., Pedesseau, L., Katan, C. & Even, J. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic–inorganic perovskites. Nanoscale 8, 6369–6378 (2016).

    Article  CAS  Google Scholar 

  38. Rainò, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    Article  Google Scholar 

  39. Yu, Z. G. Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep. 6, 28576 (2016).

    Article  CAS  Google Scholar 

  40. Bayer, M. et al. Electron and hole g factors and exchange interaction from studies of the exciton fine structure in In0.60Ga0.40As quantum dots. Phys. Rev. Lett. 82, 1748–1751 (1999).

    Article  CAS  Google Scholar 

  41. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  42. Htoon, H. et al. Anomalous circular polarization of photoluminescence spectra of individual CdSe nanocrystals in an applied magnetic field. Phys. Rev. Lett. 102, 017402 (2009).

    Article  CAS  Google Scholar 

  43. Fu, M. et al. Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nat. Commun. 9, 3318 (2018).

    Article  Google Scholar 

  44. Morello, G. et al. Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots. J. Phys. Chem. C 111, 5846–5849 (2007).

    Article  CAS  Google Scholar 

  45. Gauthron, K. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 18, 5913–5919 (2010).

    Article  Google Scholar 

  46. Pfingsten, O. et al. Phonon interaction and phase transition in single formamidinium lead bromide quantum dots. Nano Lett. 18, 4440–4446 (2018).

    Article  CAS  Google Scholar 

  47. Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. J. Phys. Chem. C 121, 14872–14878 (2017).

    Article  CAS  Google Scholar 

  48. Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    Article  Google Scholar 

  49. Biadala, L., Louyer, Y., Tamarat, P. & Lounis, B. Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals. Phys. Rev. Lett. 103, 037404 (2009).

    Article  CAS  Google Scholar 

  50. Takagahara, T. Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 71, 3577–3580 (1993).

    Article  CAS  Google Scholar 

  51. Neukirch, A. J. et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016).

    Article  CAS  Google Scholar 

  52. Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  Google Scholar 

  53. Ferreira, A. C. et al. Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 121, 085502 (2018).

    Article  CAS  Google Scholar 

  54. Frohna, K. et al. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 9, 1829 (2018).

    Article  Google Scholar 

  55. Protesescu, L. et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138, 14202–14205 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the French National Agency for Research, Région Aquitaine, Idex Bordeaux (LAPHIA Program) and the French Ministry of Education and Research. J.E. and B.L. acknowledge the Institut universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

M.I.B. and M.V.K. prepared the samples. M.I.B., M.V.K and R.E. performed the ensemble characterization. P.T. performed the optical experiments. P.T., J.-B.T. and B.L. interpreted the data, which were analysed by P.T. and J.-B.T. B.L. and P.T. modelled the evolutions of the spectra and decay rates with temperature and magnetic fields. J.E. developed the model of exchange interaction. P.T., J.E. and B.L. wrote the manuscript with input from all authors. B.L. supervised the project.

Corresponding author

Correspondence to Brahim Lounis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Notes 1–2 and Supplementary References 1–17

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamarat, P., Bodnarchuk, M.I., Trebbia, JB. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019). https://doi.org/10.1038/s41563-019-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0364-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing