Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly stable fullerene-based porous molecular crystals with open metal sites

Abstract

The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C60 or C70) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The crystal structures of the fullerene-containing PNCs.
Fig. 2: Pressure-induced changes in crystal structure.
Fig. 3: Changes in molecular structure of the (dipPhO)8PcCo component on compression of PNC[cC60/Co–vH2O] and PNC[cC70/Co–vH2O].
Fig. 4: Thermal, gas adsorption and XRD data supporting the stability of PUNC[cC60/Co].

Similar content being viewed by others

Data avaliability

Crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) http://www.ccdc.cam.ac.uk/data_request/cif by using the following deposition codes. CCDC1851707: non cubic form of (dipPhO)8PcH2 (Supplementary Table 4); CCDC1851708: non cubic form of (dipPhO)8PcCu (Supplementary Table 4); CCDC1853490: PNC[cC60/Co–vPy] (Supplementary Table 5) CCDC1856443: non-cubic form of (dipPhO)8PcAg (Supplementary Table 5); CCDC1857087: PUNC[cC60/Co] desolvated by stream of nitrogen at room temperature (Supplementary Table 5); CCDC1851749–1851759: PNC[cC60/Co–vH2O] high-pressure compression study (Supplementary Table 7); CCDC185729–1851735: PNC[cC70/Co–vH2O] high-pressure compression study (Supplementary Table 8); CCDC1851743–1851745: PNC[Co–cbipy–Co] high-pressure compression study (Supplementary Table 9); CCDC1851736–1851742: structures of PUNC[cC60/Co] from gas cell experiments including structure evacuated in vacuum and subjected up to 8.5 bar of CO (Supplementary Table 11); CCDC1851416–1851422: structures of PUNC[cC60/Co] from gas cell experiments including structure evacuated in vacuum and subjected up to 8.5 bar of O2 (Supplementary Table 12); CCDC1851746: PUNC[cC60/Cu] desolvated by application of vacuum in gas cell (Supplementary Table 13); CCDC1851747: PUNC[cC60/Ag] desolvated by application of vacuum in gas cell (Supplementary Table 13); CCDC1851748: PUNC[cC60/H2] desolvated by application of vacuum in gas cell (Supplementary Table 13).

References

  1. Slater, A. G. & Cooper, A. I. Function-led design of porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  2. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  3. Feng, X., Ding, X. S. & Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  4. Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    Article  CAS  Google Scholar 

  5. McKeown, N. B. Molecular nanoporous crystals: predictable porosity. Nat. Mater. 10, 563–564 (2011).

    Article  CAS  Google Scholar 

  6. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014).

    Article  CAS  Google Scholar 

  7. Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    Article  CAS  Google Scholar 

  8. McKeown, N. B. Nanoporous molecular crystals. J. Mater. Chem. 20, 10588–10597 (2010).

    Article  CAS  Google Scholar 

  9. Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915–920 (2010).

    Article  CAS  Google Scholar 

  10. Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012).

    Article  CAS  Google Scholar 

  11. Pulido, A. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).

    Article  CAS  Google Scholar 

  12. Lim, S. et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).

    Article  CAS  Google Scholar 

  13. Chen, T.-H. et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 5, 5131 (2014).

    Article  CAS  Google Scholar 

  14. Lee, N. H. et al. A molecular porous zirconium–organic material exhibiting highly selective CO2 adsorption, high thermal stability, reversible hydration, facile ligand exchange and exclusive dimerization of phenylacetylene. CrystEngComm 16, 5619–5626 (2014).

    Article  CAS  Google Scholar 

  15. Nugent, P. S. et al. A robust molecular porous material with high CO2 uptake and selectivity. J. Am. Chem. Soc. 135, 10950–10953 (2013).

    Article  CAS  Google Scholar 

  16. Hu, F. et al. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angew. Chem. Int. Ed. 56, 2101–2104 (2017).

    Article  CAS  Google Scholar 

  17. Hisaki, I. et al. Hexaazatriphenylene-based hydrogen-bonded organic framework with permanent porosity and single-crystallinity. Chem. Eur. J. 23, 11611–11619 (2017).

    Article  CAS  Google Scholar 

  18. Liu, M. et al. Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic “tying” of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).

    Article  CAS  Google Scholar 

  19. McKeown, N. B. et al. A phthalocyanine clathrate of cubic symmetry containing interconnected solvent-filled voids of nanometer dimensions. Angew. Chem. Int. Ed. 44, 7546–7549 (2005).

    Article  CAS  Google Scholar 

  20. Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).

    Article  CAS  Google Scholar 

  21. Bezzu, C. G. et al. In-situ coordination chemistry within cobalt-containing phthalocyanine nanoporous crystals. CrystEngComm 15, 1545–1550 (2013).

    Article  CAS  Google Scholar 

  22. McKeown, N. B. Phthalocyanine Materials: Synthesis, Structure and Function (Cambridge University Press, 1998).

  23. Hupp, J. T. Crystal engineering: towards artificial enzymes. Nat. Chem. 2, 432–433 (2010).

    Article  CAS  Google Scholar 

  24. Sakaguchi, K.-i et al. Phenothiazine-bridged cyclic porphyrin dimers as high-affinity hosts for fullerenes and linear array of C60 in self-assembled porphyrin nanotube. J. Org. Chem. 79, 2980–2992 (2014).

    Article  CAS  Google Scholar 

  25. Saegusa, Y. et al. Supramolecular interaction of fullerenes with a curved π-surface of a monomeric quadruply ring-fused porphyrin. Chem. Eur. J. 21, 5302–5306 (2015).

    Article  CAS  Google Scholar 

  26. Bredenkotter, B., Henne, S. & Volkmer, D. Nanosized ball joints constructed from C60 and tribenzotriquinacene sockets: synthesis, component self-assembly and structural investigations.Chem. Eur. J. 13, 9931–9938 (2007).

    Article  CAS  Google Scholar 

  27. Coudert, F. X. Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    Article  CAS  Google Scholar 

  28. McKellar, S. C. & Moggach, S. A. Structural studies of metal-organic frameworks under high pressure. Acta Cryst. B71, 587–607 (2015).

    Google Scholar 

  29. Graham, A. J., Allan, D. R., Muszkiewicz, A., Morrison, C. A. & Moggach, S. A. The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure. Angew. Chem. Int. Ed. 50, 11138–11141 (2011).

    Article  CAS  Google Scholar 

  30. Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    Article  CAS  Google Scholar 

  31. Moggach, S. A., Bennett, T. D. & Cheetham, A. K. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009).

    Article  CAS  Google Scholar 

  32. Hobday, C. L. et al. A computational and experimental approach linking disorder, high-pressure behavior, and mechanical properties in UiO frameworks. Angew. Chem. Int. Ed. 55, 2401–2405 (2016).

    Article  CAS  Google Scholar 

  33. Graham, A. J. et al. Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure. J. Am. Chem. Soc. 136, 8606–8613 (2014).

    Article  CAS  Google Scholar 

  34. Graham, A. J., Tan, J. C., Allan, D. R. & Moggach, S. A. The effect of pressure on Cu-btc: framework compression vs. guest inclusion. Chem. Commun. 48, 1535–1537 (2012).

    Article  CAS  Google Scholar 

  35. Howarth, A. J. et al. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater. 29, 26–39 (2017).

    Article  CAS  Google Scholar 

  36. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  37. Feng, D. W. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012).

    Article  CAS  Google Scholar 

  38. Lv, X. L. et al. A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation. J. Am. Chem. Soc. 139, 211–217 (2017).

    Article  CAS  Google Scholar 

  39. Gallagher, A. T., Malliakas, C. D. & Harris, T. D. CO binding at a four-coordinate cobaltous porphyrin site in a metal-organic framework: structural, EPR, and gas adsorption analysis. Inorg. Chem. 56, 4654–4661 (2017).

    Article  Google Scholar 

  40. Gallagher, A. T. et al. Dioxygen binding at a four-coordinate cobaltous porphyrin site in a metal-organic framework: structural, EPR, and O2 adsorption analysis. Inorg. Chem. Frontiers 3, 536–540 (2016).

    Article  CAS  Google Scholar 

  41. O’Keeffe, M. C60 zeolites. Nature 352, 674 (1991).

    Article  Google Scholar 

  42. Bhyrappa, P. & Karunanithi, K. Porphyrin-fullerene, C60, cocrystallates: influence of C60 on the porphyrin ring conformation. Inorg. Chem. 49, 8389–8400 (2010).

    Article  CAS  Google Scholar 

  43. Wang, Y. B. & Lin, Z. Y. Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc. 125, 6072–6073 (2003).

    Article  CAS  Google Scholar 

  44. Konarev, D. V., Khasanov, S. S. & Lyubovskaya, R. N. Fullerene complexes with coordination assemblies of metalloporphyrins and metal phthalocyanines. Coord. Chem. Rev. 262, 16–36 (2014).

    Article  CAS  Google Scholar 

  45. Taylor, S. K., Jameson, G. B. & Boyd, P. D. W. A new polymeric framework formed by the self assembly of 5,10,15,20-tetra(3-pyridyl)porphyrin, HgI2 and C60. Supramol. Chem. 17, 543–546 (2005).

    Article  CAS  Google Scholar 

  46. Boyd, P. D. W. & Reed, C. A. Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005).

    Article  CAS  Google Scholar 

  47. Sun, D., Tham, F. S., Reed, C. A. & Boyd, P. D. W. Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks. Proc. Natl Acad. Sci. USA 99, 5088–5092 (2002).

    Article  CAS  Google Scholar 

  48. Peng, P., Li, F. F., Neti, V., Metta-Magana, A. J. & Echegoyen, L. Design, synthesis, and X-ray crystal structure of a fullerene-linked metal–organic framework. Angew. Chem. Int. Ed. 53, 160–163 (2014).

    Article  CAS  Google Scholar 

  49. Kraft, A. et al. Three-dimensional metal-fullerene frameworks. Chem. Eur. J. 22, 5982–5987 (2016).

    Article  CAS  Google Scholar 

  50. Rice, A. M., Dolgopolova, E. A. & Shustova, N. B. Fulleretic materials: buckyball- and buckybowl-based crystalline frameworks. Chem. Mater. 29, 7054–7061 (2017).

    Article  CAS  Google Scholar 

  51. Ragoussi, M.-E. & Torres, T. Modern synthetic tools toward the preparation of sophisticated phthalocyanine-based photoactive systems. Chem. Asian J. 9, 2676–2707 (2014).

    Article  CAS  Google Scholar 

  52. Bottari, G., Trukhina, O., Ince, M. & Torres, T. Towards artificial photosynthesis: supramolecular, donor–acceptor, porphyrin- and phthalocyanine/carbon nanostructure ensembles. Coord. Chem. Rev. 256, 2453–2477 (2012).

    Article  CAS  Google Scholar 

  53. Bottari, G., de la Torre, G., Guldi, D. M. & Torres, T. Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev. 110, 6768–6816 (2010).

    Article  CAS  Google Scholar 

  54. McKellar, S. C. et al. Pore shape modification of a microporous metal–organic framework using high pressure: accessing a new phase with oversized guest molecules. Chem. Mater. 28, 466–473 (2016).

    Article  CAS  Google Scholar 

  55. Moggach, S. A., Allan, D. R., Parsons, S. & Warren, J. E. Incorporation of a new design of backing seat and anvil in a Merrill-Bassett diamond anvil cell. J. Appl. Crystal. 41, 249–251 (2008).

    Article  CAS  Google Scholar 

  56. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystal. 36, 1487 (2003).

    Article  CAS  Google Scholar 

  57. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystal. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  58. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystal. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  59. Collaborative Computational Project, Number 4The CCP4 suite: programs for protein crystallography. Acta Crystal. D50, 760–763 (1994).

    Google Scholar 

  60. Evans, P. Scaling and assessment of data quality. Acta Crystal. D62, 72–82 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC via grant EP/N01331X/1 and the University of Edinburgh for funding and the Diamond Light Source for beamtime on Station I19.

Author information

Authors and Affiliations

Authors

Contributions

C.G.B. prepared the fullerene-based crystals and performed porosity and stability analysis. L.A.B. prepared the silver phthalocyanine and crystals derived from it. C.J.M. collected and analysed crystallographic data at the University of Edinburgh and the DLS, Station I19. S.A.M. designed the high-pressure experiments, collected data, refined the crystallographic structures and supervised the crystallographic analysis of the materials. B.K. collected crystallographic data at the DLS, Station I19. D.R.A. designed DLS Station I19, supervised its operation and helped with data collection and processing. M.W. constructucted the gas cell associated with DLS, Station I19 and helped with data collection and processing. N.B.M. conceived the idea of the incorporation of fullerenes within the phthalocyanine molecular crystals, supervised the synthesis of materials and wrote the manuscript with input from all of the authors.

Corresponding author

Correspondence to Neil B. McKeown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Tables 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezzu, C.G., Burt, L.A., McMonagle, C.J. et al. Highly stable fullerene-based porous molecular crystals with open metal sites. Nat. Mater. 18, 740–745 (2019). https://doi.org/10.1038/s41563-019-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0361-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing