Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth of environmentally stable transition metal selenide films

Abstract

Two-dimensional transition metal selenides (TMSs) possess fascinating physical properties. However, many as-prepared TMSs are environmentally unstable and limited in sample size, which greatly hinder their wide applications in high-performance electrical devices. Here we develop a general two-step vapour deposition method and successfully grow different TMS films with controllable thickness, wafer size and high quality. The superconductivity of the grown NbSe2 film is comparable with sheets exfoliated from bulk materials, and can maintain stability after a variety of harsh treatments, which are ascribed to the absence of oxygen during the whole growth process. Such environmental stability can greatly simplify the fabrication procedure for device applications, and should be of both fundamental and technological significance in developing TMS-based devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step vapour deposition growth of wafer-sized NbSe2 film.
Fig. 2: Atomic images of a 1.5 nm NbSe2 film.
Fig. 3: Superconductivity in NbSe2 films with different treatments.
Fig. 4: Generalization of the two-step vapour deposition method.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Xia, F. N., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  3. Joe, Y. I. et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2. Nat. Phys. 10, 421–425 (2014).

    Article  CAS  Google Scholar 

  4. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–770 (2015).

    Article  CAS  Google Scholar 

  5. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    Article  CAS  Google Scholar 

  6. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  7. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).

    Article  CAS  Google Scholar 

  8. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  9. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  10. Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    Article  CAS  Google Scholar 

  11. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  12. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2015).

    Article  Google Scholar 

  13. Hotta, T. et al. Molecular beam epitaxy growth of monolayer niobium diselenide flakes. Appl. Phys. Lett. 109, 133101 (2016).

    Article  Google Scholar 

  14. Chen, P. et al. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 6, 8943 (2015).

    Article  CAS  Google Scholar 

  15. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  16. Lu, G. et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015).

    Article  CAS  Google Scholar 

  17. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  18. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015).

    Article  CAS  Google Scholar 

  19. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017).

    Article  Google Scholar 

  21. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  Google Scholar 

  22. Li, S. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).

    Article  CAS  Google Scholar 

  23. Zhou, L. et al. Synthesis of high-quality large-area homogenous 1T’ MoTe2 from chemical vapor deposition. Adv. Mater. 28, 9526–9531 (2016).

    Article  CAS  Google Scholar 

  24. Kim, A. R. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 16, 1890–1895 (2016).

    Article  CAS  Google Scholar 

  25. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  26. Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    Article  CAS  Google Scholar 

  27. Laskar, M. R. et al. Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 102, 252108 (2013).

    Article  Google Scholar 

  28. Nemes-Incze, P., Osvath, Z., Kamaras, K. & Biro, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435–1442 (2008).

    Article  CAS  Google Scholar 

  29. Saito, R., Tatsumi, Y., Huang, S., Ling, X. & Dresselhaus, M. S. Raman spectroscopy of transition metal dichalcogenides. J. Phys. Condens. Matter 28, 353002 (2016).

    Article  CAS  Google Scholar 

  30. Hong, J. H. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  Google Scholar 

  31. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  32. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1996).

  33. López-Polín, G. et al. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11, 26–31 (2015).

    Article  Google Scholar 

  34. Sun, L. et al. Suppression of the charge density wave state in two-dimensional 1T-TiSe2 by atmospheric oxidation. Angew. Chem. Int. Ed. 56, 8981–8985 (2017).

    Article  CAS  Google Scholar 

  35. Kim, M. et al. Strong proximity Josephson coupling in vertically stacked NbSe2–graphene–NbSe2 van der Waals junctions. Nano Lett. 17, 6125–6130 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Jiang, B. Li and Y. Dai for help with absorption measurements, and W. Chen and Y. Zhang for help with XPS measurements. This work is supported by the National Key R&D Program of China (grant no. 2018YFA0305800), the National Natural Science Foundation of China (nos. 11674154, 11761131010, 11774151 and 51771172) and the Fundamental Research Funds for the Central Universities (nos. 020414380065 and 020414380094 and 02041438100), and the Basic Research Program of Jiangsu Province (grant no. BK20161390). The numerical calculations have been carried out at the High Performance Computing Center of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

L.G. conceived and supervised the project, and designed the experiments; H.L. carried out growth experiments and transport measurements; J.X., X.H. and W.S. helped with the device fabrication and transport measurements; Q.Z. and J.W. performed STEM; D.L. and X.X. performed the terahertz Raman spectroscopy; D.S. carried out the theoretical simulations; L.G. and H.L. wrote the manuscript, J.W., Q.Z., J.X. and X.X. revised it, and all of the authors commented on it.

Corresponding authors

Correspondence to Jiangwei Wang or Libo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–18, Supplementary References 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhu, Q., Shu, D. et al. Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0321-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing