Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Electrolyte-based ionic control of functional oxides

Abstract

The use of electrolyte gating to electrically control electronic, magnetic and optical properties of materials has seen strong recent growth, driven by the potential of the many devices and applications that such control may enable. Contrary to initial expectations of a purely electrostatic response based on electron or hole doping, electrochemical mechanisms based on the motion of ions are now understood to be common, suggesting promising new electrical control concepts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The EDLT, highlighting electrostatic and electrochemical gating mechanisms.
Fig. 2: Examples of EDLT-based control of functional oxides.
Fig. 3: Examples of electrochemical electrolyte and ionic conductor-based control concepts.

Similar content being viewed by others

References

  1. Ahn, C. H., Triscone, J. M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  2. Ahn, C. H. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 78, 1185 (2006).

    Article  CAS  Google Scholar 

  3. Ramesh, R. & Schlom, D. G. Whither oxide electronics. MRS Bull. 33, 1006–1014 (2008).

    Article  Google Scholar 

  4. Chakhalian, J., Millis, A. J. & Rondinelli, J. M. Whither the oxide interface. Nat. Mater. 11, 92–94 (2012).

    Article  CAS  Google Scholar 

  5. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  6. Kim, S. H. et al. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822–1846 (2013).

    Article  CAS  Google Scholar 

  7. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  CAS  Google Scholar 

  8. Du, H., Lin, X., Xu, Z. & Chu, D. Electric double-layer transistors: a review of recent progress. J. Mater. Sci. 50, 5641–5673 (2015).

    Article  CAS  Google Scholar 

  9. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  10. Lodge, T. P. A unique platform for materials design. Science 321, 50–51 (2008).

    Article  CAS  Google Scholar 

  11. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  12. Dhoot, A. S., Israel, C., Moya, X., Mathur, N. D. & Friend, R. H. Large electric field effect in electrolyte-gated managnites. Phys. Rev. Lett. 102, 136402 (2009).

    Article  Google Scholar 

  13. Scherwitzl, R. et al. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).

    Article  CAS  Google Scholar 

  14. Yuan, H. et al. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. J. Am. Chem. Soc. 132, 18402–18407 (2010).

    Article  CAS  Google Scholar 

  15. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotech. 6, 408–412 (2011).

    Article  CAS  Google Scholar 

  16. Bollinger, A. T. et al. Superconductor–insulator transition inLa2–xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  CAS  Google Scholar 

  17. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting to an insulating phase in ultrathin YBa2Cu3O7–x films. Phys. Rev. Lett. 107, 027001 (2011).

    Article  Google Scholar 

  18. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  CAS  Google Scholar 

  19. Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

    Article  CAS  Google Scholar 

  20. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric-field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  21. Li, M. et al. Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen. Nano Lett. 13, 4675–4678 (2013).

    Article  CAS  Google Scholar 

  22. Yi, H. T., Gao, B., Xie, X., Cheong, S.-W. & Podzorov, V. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating. Sci. Rep. 4, 6604 (2014).

    Article  CAS  Google Scholar 

  23. Gallagher, P. et al. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 6, 6437 (2015).

    Article  CAS  Google Scholar 

  24. Bubel, S. et al. The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates. Appl. Phys. Lett. 106, 122102 (2015).

    Article  Google Scholar 

  25. Walter, J., Wang, H., Luo, B., Frisbie, C. D. & Leighton, C. Electrostatic vs. electrochemical doping and control of ferromagnetism in ion-gel-gated ultrathin La0.5Sr0.5CoO3–δ. ACS Nano 10, 7799–7810 (2016).

    Article  CAS  Google Scholar 

  26. Walter, J. et al. Ion-gel-gating-induced oxygen vacancy formation in epitaxial La0.5Sr0.5CoO3–δ films from in operando x-ray and neutron scattering. Phys. Rev. Mater. 1, 071403 (2017).

    Article  Google Scholar 

  27. Perez-Muñoz, A. M. et al. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-x. Proc. Natl Acad. Sci. 114, 215–220 (2017).

    Article  Google Scholar 

  28. Dong, Y. et al. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures. APL Mater. 5, 051101 (2017).

    Article  Google Scholar 

  29. Leng, X. et al. Insulator to metal transition in WO3 induced by electrolyte gating. npj Quantum Mater. 2, 35 (2017).

    Article  Google Scholar 

  30. Walter, J. et al. Giant electrostatic modification of magnetism via electrolye-gate-induced cluster percolation in La1–xSrxCoO3–δ. Phys. Rev. Mater. (in the press); preprint at https://arxiv.org/abs/1807.09364

  31. Schladt, T. D. et al. Crystal-facet-dependent metallization in electrolyte-gated rutile TiO2 single crystals. ACS Nano 7, 8074–8081 (2013).

    Article  CAS  Google Scholar 

  32. Xie, W., Wang, S., Zhang, X., Leighton, C. & Frisbie, C. D. High conductance 2D transport around the Hall mobility peak in electrolyte-gated rubrene crystals. Phys. Rev. Lett. 113, 246602 (2014).

    Article  Google Scholar 

  33. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  34. Wang, S., Ha, M., Manno, M., Frisbie, C. D. & Leighton, C. Hopping transport and the Hall effect near the insulator-metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

    Article  Google Scholar 

  35. Yajima, T., Nishimura, T. & Toriumi, A. Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics. Nat. Commun. 6, 10104 (2015).

    Article  CAS  Google Scholar 

  36. Ji, H., Wei, J. & Natelson, D. Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 2988–2992 (2012).

    Article  CAS  Google Scholar 

  37. Shibuya, K. & Sawa, A. Modulation of metal-insulator transition in VO2 by electrolyte gating-induced protonation. Adv. Electron. Mater. 2, 1500131 (2016).

    Article  Google Scholar 

  38. Leng, X., Bollinger, A. T. & Bozovic, I. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films. Sci. Rep. 6, 31239 (2016).

    Article  CAS  Google Scholar 

  39. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  CAS  Google Scholar 

  40. Shimamura, K. et al. Electrical control of Curie temperature in cobalt using an ionic liquid film. Appl. Phys. Lett. 100, 122402 (2012).

    Article  Google Scholar 

  41. Bi, C. et al. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113, 267202 (2014).

    Article  Google Scholar 

  42. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015).

    Article  CAS  Google Scholar 

  43. Gilbert, D. A. et al. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nat. Commun. 7, 12264 (2016).

    Article  CAS  Google Scholar 

  44. Lu, Q. et al. Electrochemically triggered metal-insulator transition between VO2 and V2O5. Adv. Funct. Mater. 28, 1803024 (2018).

    Article  Google Scholar 

  45. Ren, X., Frisbie, C. D. & Leighton, C. Anomalous cooling-rate-dependent charge transport in electrolyte-gated rubrene crystals. J. Phys. Chem. Lett. 9, 4828–4833 (2018).

    Article  CAS  Google Scholar 

  46. Youssef, M., Van Vliet, K. J. & Yildiz, B. Polarizing oxygen vacancies in insulating metal oxides under a high electric field. Phys. Rev. Lett. 119, 126002 (2017).

    Article  Google Scholar 

  47. Prasad, B. et al. Integrated circuits comprising patterned functional liquids. Adv. Mater. 30, 1802598 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

I thank a number of colleagues and collaborators for contributing to my understanding in this area, including D. Frisbie, B. Shklovskii, M. Greven, T. Lodge, A. Goldman, J. Garcia-Barriocanal, J. Walter, H. Wang and X. Ren. Financial support from the University of Minnesota NSF MRSEC (DMR-1420013) and the DOE-supported Center for Quantum Materials (DE-SC-0016371) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Leighton.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leighton, C. Electrolyte-based ionic control of functional oxides. Nature Mater 18, 13–18 (2019). https://doi.org/10.1038/s41563-018-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0246-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing