Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal meta-device in analogue of zero-index photonics

Abstract

Inspired by the developments in photonic metamaterials, the concept of thermal metamaterials has promised new avenues for manipulating the flow of heat. In photonics, the existence of natural materials with both positive and negative permittivities has enabled the creation of metamaterials with a very wide range of effective parameters. In contrast, in conductive heat transfer, the available range of thermal conductivities in natural materials is far narrower, strongly restricting the effective parameters of thermal metamaterials and limiting possible applications in extreme environments. Here, we identify a rigorous correspondence between zero index in Maxwell’s equations and infinite thermal conductivity in Fourier’s law. We also propose a conductive system with an integrated convective element that creates an extreme effective thermal conductivity, and hence by correspondence a thermal analogue of photonic near-zero-index metamaterials, a class of metamaterials with crucial importance in controlling light. Synergizing the general properties of zero-index metamaterials and the specific diffusive nature of thermal conduction, we theoretically and experimentally demonstrate a thermal zero-index cloak. In contrast with conventional thermal cloaks, this meta-device can operate in a highly conductive background and the cloaked object preserves great sensitivity to external temperature changes. Our work demonstrates a thermal metamaterial which greatly enhances the capability for molding the flow of heat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The origin of thermal NZIM and its effect in thermal cloaking.
Fig. 2: Steady-state temperature profiles.
Fig. 3: Transient temperature profiles at 500s and the central temperature evolution with time.
Fig. 4: Experimental verification of a convective thermal zero-index cloak.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author C.-W.Q. upon reasonable request.

References

  1. Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012).

    Article  Google Scholar 

  2. Han, T. et al. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy Environ. Sci. 6, 3537–3541 (2013).

    Article  CAS  Google Scholar 

  3. Han, T., Bai, X., Thong, J. T. L., Li, B. & Qiu, C.-W. Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials. Adv. Mater. 26, 1731–1734 (2014).

    Article  CAS  Google Scholar 

  4. Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).

    Article  Google Scholar 

  5. Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012).

    Article  Google Scholar 

  6. Vemuri, K. P. & Bandaru, P. R. Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Appl. Phys. Lett. 103, 133111 (2013).

    Article  Google Scholar 

  7. Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013).

    Article  Google Scholar 

  8. Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014).

    Article  Google Scholar 

  9. Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).

    Article  Google Scholar 

  10. Ma, Y., Liu, Y., Raza, M., Wang, Y. & He, S. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014).

    Article  Google Scholar 

  11. Li, Y., Bai, X., Yang, T., Luo, H. & Qiu, C.-W. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Article  Google Scholar 

  12. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  13. Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).

    Article  Google Scholar 

  14. Yang, T. Z. et al. Invisible sensors: Simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015).

    Article  CAS  Google Scholar 

  15. Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photon. 11, 149–158 (2017).

    Article  CAS  Google Scholar 

  16. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  17. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  Google Scholar 

  18. Mahmoud, A. M. & Engheta, N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun. 5, 5638 (2014).

    Article  CAS  Google Scholar 

  19. Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    Article  CAS  Google Scholar 

  20. Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    Article  CAS  Google Scholar 

  21. Chu, H. et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl. 7, 50 (2018).

    Article  Google Scholar 

  22. Alam, M. Z., Schulz, S. A., Upham, J., Leon, I. D. & Boyd, R. W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photon. 12, 79–83 (2018).

    Article  CAS  Google Scholar 

  23. Liberal, I. & Engheta, N. Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proc. Natl Acad. Sci. USA 115, 2878–2883 (2018).

    Article  CAS  Google Scholar 

  24. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    Article  CAS  Google Scholar 

  25. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

    Article  CAS  Google Scholar 

  27. Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photon. 7, 907–912 (2013).

    Article  CAS  Google Scholar 

  28. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  CAS  Google Scholar 

  29. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  30. Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).

    Article  Google Scholar 

  31. Bejan, A. Convection Heat Transfer (Wiley, Hoboken, 2013).

  32. Olver, F. W. J. & Maximon, L. C. in NIST Digital Library of Mathematical Functions Ch. 10 (Version 1.0.18, release date 27 March 2018); http://dlmf.nist.gov/10release1.0.18 of2018-03-27.

  33. Torrent, D., Poncelet, O. & Batsale, J.-C. Nonreciprocal thermal material by spatiotemporal modulation. Phys. Rev. Lett. 120, 125501 (2018).

    Article  Google Scholar 

  34. Shen, X. Y. & Huang, J. P. Thermally hiding an object inside a cloak with feeling. Int. J. Heat Mass Trans. 78, 1–6 (2014).

    Article  Google Scholar 

  35. Garnett, J. C. M. Colours in metal glasses, in metallic films, and in metallic solutions. II. Phil. Trans. R. Soc. A 205, 238–288 (1906).

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. and C.-W.Q. acknowledge financial support from the Ministry of Education, Singapore (Project No. R-263-000-C05-112). K.-J.Z. and H.C. are supported by National Key Research Program of China (2016YFA0301101), National Natural Science Foundation of China (61621001), and Natural Science Foundation of Shanghai (18JC1410900). Y.-G.P. and X.-F.Z. are supported by the National Natural Science Foundation of China (Grant Nos. 11690030, 11690032 and 11674119). W.L. and S.F. are supported by Department of Energy Grant No. DE-FG-07ER46426.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and C.-W.Q. conceived the idea. Y.L. designed and performed numerical simulations and theoretical derivations. Y.L., K.-J.Z. and Y.-G.P. performed the experiments. Y.L., W.L., S.F. and C.-W.Q. analysed the numerical results. C.-W.Q. supervised the project. All the authors contributed to the manuscript writing.

Corresponding authors

Correspondence to Shanhui Fan or C.-W. Qiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Reference 1, Supplementary Figures 1–5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhu, KJ., Peng, YG. et al. Thermal meta-device in analogue of zero-index photonics. Nature Mater 18, 48–54 (2019). https://doi.org/10.1038/s41563-018-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0239-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing