Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-chip valley topological materials for elastic wave manipulation

Abstract

Valley topological materials, in which electrons possess valley pseudospin, have attracted a growing interest recently. The additional valley degree of freedom offers a great potential for its use in information encoding and processing. The valley pseudospin and valley edge transport have been investigated in photonic and phononic crystals for electromagnetic and acoustic waves, respectively. In this work, by using a micromanufacturing technology, valley topological materials are fabricated on silicon chips, which allows the observation of gyral valley states and valley edge transport for elastic waves. The edge states protected by the valley topology are robust against the bending and weak randomness of the channel between distinct valley Hall phases. At the channel intersection, a counterintuitive partition of the valley edge states manifests for elastic waves, in which the partition ratio can be freely adjusted. These results may enable the creation of on-chip high-performance micro-ultrasonic materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microfabricated PC on a silicon chip.
Fig. 2: Valley gyral states.
Fig. 3: Phase diagram and valley projected edge states.
Fig. 4: Experimental demonstration of edge states and the reflection immunity.
Fig. 5: Partition of the edge states at topological channel intersections.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  2. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  CAS  Google Scholar 

  3. Lundeberg, M. B. & Folk, J. A. Harnessing chirality for valleytronics. Science 346, 422–423 (2014).

    Article  CAS  Google Scholar 

  4. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  5. Deng, F. et al. Observation of valley-dependent beams in photonic graphene. Opt. Express 22, 23605–23613 (2014).

    Article  CAS  Google Scholar 

  6. Deng, F. et al. Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Opt. Lett. 40, 3380–3383 (2015).

    Article  CAS  Google Scholar 

  7. Dong, J. W., Chen, X. D., Zhu, H., Wang, Y. & Zhang, X. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    Article  CAS  Google Scholar 

  8. Bleu, O., Solnyshkov, D. D. & Malpuech, G. Quantum valley Hall effect and perfect valley filter based on photonic analogs of transitional metal dichalcogenides. Phys. Rev. B 95, 235431 (2017).

    Article  Google Scholar 

  9. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  CAS  Google Scholar 

  10. Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018).

    Article  CAS  Google Scholar 

  11. Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Article  CAS  Google Scholar 

  12. Ma, T. & Shvets, G. Scattering-free edge states between heterogeneous photonic topological insulators. Phys. Rev. B 95, 165102 (2017).

    Article  Google Scholar 

  13. Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

    Article  CAS  Google Scholar 

  14. Ye, L. et al. Observation of acoustic valley vortex states and valley-chirality locked beam splitting. Phys. Rev. B 95, 174106 (2017).

    Article  Google Scholar 

  15. Pal, R. K. & Ruzzene, M. Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect. New J. Phys. 19, 025001 (2017).

    Article  Google Scholar 

  16. Lu, J. et al. Valley topological phases in bilayer sonic crystals. Phys. Rev. Lett. 120, 116802 (2018).

    Article  CAS  Google Scholar 

  17. Vila, J., Pal, R. K. & Ruzzene, M. Observation of topological valley modes in an elastic hexagonal lattice. Phys. Rev. B 96, 134307 (2017).

    Article  Google Scholar 

  18. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2016).

    Article  CAS  Google Scholar 

  19. Chen, J.-J., Huo, S.-Y., Geng, Z.-G., Huang, H.-B. & Zhu, X.-F. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface. AIP Adv. 7, 115215 (2017).

    Article  Google Scholar 

  20. Huo, S. Y., Chen, J. J., Huang, H. B. & Huang, G. L. Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins. Sci. Rep. 7, 10335 (2017).

    Article  CAS  Google Scholar 

  21. Liu, T.-W. & Semperlotti, F. Tunable acoustic valley-Hall edge states in reconfigurable phononic elastic waveguides. Phys. Rev. Appl. 9, 014001 (2018).

    Article  CAS  Google Scholar 

  22. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  CAS  Google Scholar 

  23. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  CAS  Google Scholar 

  25. Lu, J. et al. Dirac cones in two-dimensional artificial crystals for classical waves. Phys. Rev. B 89, 134302 (2014).

    Article  CAS  Google Scholar 

  26. Collins, M. J., Zhang, F., Bojko, R., Chrostowski, L. & Rechtsman, M. C. Integrated optical Dirac physics via inversion symmetry breaking. Phys. Rev. A 94, 063827 (2016).

    Article  Google Scholar 

  27. Liu, J.-L., Ye, W.-M. & Zhang, S. Pseudospin-induced chirality with staggered optical graphene. Light Sci. Appl. 5, e16094 (2016).

    Article  CAS  Google Scholar 

  28. Wu, X. et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 8, 1304 (2017).

    Article  CAS  Google Scholar 

  29. Graczykowski, B. et al. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Phys. Rev. B 91, 075414 (2015).

    Article  CAS  Google Scholar 

  30. Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005).

    Article  CAS  Google Scholar 

  31. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  CAS  Google Scholar 

  32. Yudistira, D. et al. Nanoscale pillar hypersonic surface phononic crystals. Phys. Rev. B 94, 094304 (2016).

    Article  CAS  Google Scholar 

  33. Pourabolghasem, R., Dehghannasiri, R., Eftekhar, A. A. & Adibi, A. Waveguiding effect in the gigahertz frequency range in pillar-based phononic-crystal slabs. Phys. Rev. Appl. 9, 014013 (2018).

    Article  CAS  Google Scholar 

  34. Ghasemi Baboly, M., Reinke, C. M., Griffin, B. A., El-Kady, I. & Leseman, Z. C. Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies. Appl. Phys. Lett. 112, 103504 (2018).

    Article  CAS  Google Scholar 

  35. Hatanaka, D., Dodel, A., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon propagation dynamics in band-engineered one-dimensional phononic crystal waveguides. New J. Phys. 17, 113032 (2015).

    Article  CAS  Google Scholar 

  36. Benchabane, S. et al. Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Appl. Phys. Lett. 106, 081903 (2015).

    Article  CAS  Google Scholar 

  37. Qiao, Z. et al. Current partition at topological channel intersections. Phys. Rev. Lett. 112, 206601 (2014).

    Article  CAS  Google Scholar 

  38. Ren, Y., Zeng, J., Wang, K., Xu, F. & Qiao, Z. Tunable current partition at zero-line intersection of quantum anomalous Hall topologies. Phys. Rev. B 96, 155445 (2017).

    Article  Google Scholar 

  39. Li, J., et al A valley valve and electron beam splitter in bilayer graphene. Preprint at https://arxiv.org/abs/1708.02311 (2017).

  40. Yudistira, D. et al. Monolithic phononic crystals with a surface acoustic band gap from surface phonon–polariton coupling. Phys. Rev. Lett. 113, 215503 (2014).

    Article  CAS  Google Scholar 

  41. Ash, B. J., Worsfold, S. R., Vukusic, P. & Nash, G. R. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Nat. Commun. 8, 174 (2017).

    Article  CAS  Google Scholar 

  42. Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B 96, 020202 (2017).

    Article  Google Scholar 

  43. Gao, Z. et al. Valley surface-wave photonic crystal and its bulk/edge transport. Phys. Rev. B 96, 201402 (2017).

    Article  Google Scholar 

  44. Qiu, P. et al. Topologically protected edge states in graphene plasmonic crystals. Opt. Express 25, 22587–22594 (2017).

    Article  CAS  Google Scholar 

  45. Wang, K. et al. Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B 95, 245420 (2017).

    Article  Google Scholar 

  46. Wu, Y. et al. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater. 5, 1700357 (2017).

    Article  CAS  Google Scholar 

  47. Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, Orlando, 1998).

  48. Morgan, D. P. A history of surface acoustic wave devices. Int. J. High Speed Electron. Syst. 10, 553–602 (2000).

    Article  CAS  Google Scholar 

  49. Guo, Y., Brick, D., Großmann, M., Hettich, M. & Dekorsy, T. Acoustic beam splitting at low GHz frequencies in a defect-free phononic crystal. Appl. Phys. Lett. 110, 031904 (2017).

    Article  CAS  Google Scholar 

  50. Olsson Iii, R. H. & El-Kady, I. Microfabricated phononic crystal devices and applications. Measure. Sci. Technol. 20, 012002 (2009).

    Article  CAS  Google Scholar 

  51. Shilton, R. J., Langelier, S. M., Friend, J. R. & Yeo, L. Y. Surface acoustic wave solid-state rotational micromotor. Appl. Phys. Lett. 100, 033503 (2012).

    Article  CAS  Google Scholar 

  52. Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

    Article  Google Scholar 

  53. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  54. Balram, K. C., Davanco, M. I., Song, J. D. & Srinivasan, K. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits. Nat. Photon. 10, 346–352 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Li and B. Miao for micro fabrication. We thank S. Yin for scanning electron microscope. This work is supported by the National Key R&D Program of China (grant no. 2018FYA0305800), the National Basic Research Program of China (grant no. 2015CB755500), the National Natural Science Foundation of China (grant nos 11804101, 11572318, 11604102, 11774275 and 11704128), Guangdong Innovative and Entrepreneurial Research Team Program (grant no. 2016ZT06C594) and the National Postdoctoral Program for Innovative Talents (BX201600054 and BX201700082).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and F.L. designed and performed the experiments. M.Y. and J.L. carried out the numerical simulations. Z.L. supervised the project. All the authors contributed to the analyses and the preparation of the manuscript.

Corresponding author

Correspondence to Zhengyou Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplements A-D, Supplementary Figures 1–13, Supplementary References 1–4

K1 valley state

Displacement fields of the K1 valley state

K2 valley state

Displacement fields of the K2 valley state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Lu, J., Li, F. et al. On-chip valley topological materials for elastic wave manipulation. Nature Mater 17, 993–998 (2018). https://doi.org/10.1038/s41563-018-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0191-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing