Article | Published:

Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions

Nature Materials (2018) | Download Citation


Structural superlubricity is a fascinating tribological phenomenon, in which the lateral interactions between two incommensurate contacting surfaces are effectively cancelled resulting in ultralow sliding friction. Here we report the experimental realization of robust superlubricity in microscale monocrystalline heterojunctions, which constitutes an important step towards the macroscopic scale-up of superlubricity. The results for interfaces between graphite and hexagonal boron nitride clearly demonstrate that structural superlubricity persists even when the aligned contact sustains external loads under ambient conditions. The observed frictional anisotropy in the heterojunctions is found to be orders of magnitude smaller than that measured for their homogeneous counterparts. Atomistic simulations reveal that the underlying frictional mechanisms in the two cases originate from completely different dynamical regimes. Our results are expected to be of a general nature and should be applicable to other van der Waals heterostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

  2. 2.

    Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).

  3. 3.

    Hirano, M. & Shinjo, K. Superlubricity and frictional anisotropy. Wear 168, 121–125 (1993).

  4. 4.

    Shinjo, K. & Hirano, M. Dynamics of friction—superlubric state. Surf. Sci. 283, 473–478 (1993).

  5. 5.

    Martin, J. M., Donnet, C., Lemogne, T. & Epicier, T. Superlubricity of molybdenum disulfide. Phys. Rev. B 48, 10583–10586 (1993).

  6. 6.

    Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

  7. 7.

    Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

  8. 8.

    Yang, J. et al. Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).

  9. 9.

    Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

  10. 10.

    Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679–683 (2015).

  11. 11.

    Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotech. 8, 912–916 (2013).

  12. 12.

    Liu, Y., Grey, F. & Zheng, Q. The high-speed sliding friction of graphene and novel routes to persistent superlubricity. Sci. Rep. 4, 4875 (2014).

  13. 13.

    Vu, C. C. et al. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys. Rev. B 94, 081405(R) (2016).

  14. 14.

    Liu, S. W. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017).

  15. 15.

    Li, H. et al. Superlubricity between MoS2 monolayers. Adv. Mater. 29, 1701474 (2017).

  16. 16.

    Sheehan, P. E. & Lieber, C. M. Friction between van der Waals solids during lattice directed sliding. Nano Lett. 17, 4116–4121 (2017).

  17. 17.

    Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).

  18. 18.

    Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

  19. 19.

    Mandelli, D., Leven, I., Hod, O. & Urbakh, M. Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 10851 (2017).

  20. 20.

    Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

  21. 21.

    Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theor. Comput. 12, 2896–2905 (2016).

  22. 22.

    Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

  23. 23.

    Kolmogorov, A. N. & Crespi, V. H. Registry-Dependent Interlayer Potential for Graphitic Systems. Phys. Rev. B 71, 235415 (2005).

  24. 24.

    Donald, W. B. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Cond. Matt 14, 783–802 (2002).

  25. 25.

    Weiss, M. & Elmer, F.-J. Dry friction in the Frenkel–Kontorova–Tomlinson model: dynamical properties. Z. Phys. B Cond. Mat. 104, 55–69 (1997).

  26. 26.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

  27. 27.

    van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Moiré Patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113, 135504 (2014).

  28. 28.

    Persson, B. N. J. & Ryberg, R. Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). Phys. Rev. B 32, 3586–3596 (1985).

  29. 29.

    Persson, B. N. J., Tosatti, E., Fuhrmann, D., Witte, G. & Woll, C. Low-frequency adsorbate vibrational relaxation and sliding friction. Phys. Rev. B 59, 11777–11791 (1999).

  30. 30.

    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

  31. 31.

    Persson B. N. J. Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998).

  32. 32.

    Guerra, R., van Wijk, M., Vanossi, A., Fasolino, A. & Tosatti, E. Graphene on h-BN: to align or not to align? Nanoscale 9, 8799–8804 (2017).

  33. 33.

    Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A. & Sumant, A. V. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015).

  34. 34.

    Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

  35. 35.

    Mandelli, D., Vanossi, A., Manini, N. & Tosatti, E. Friction boosted by equilibrium misalignment of incommensurate two-dimensional colloid monolayers. Phys. Rev. Lett. 114, 108302 (2015).

  36. 36.

    Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

  37. 37.

    Braiman, Y., Hentschel, H. G. E., Family, F., Mak, C. & Krim, J. Tuning friction with noise and disorder. Phys. Rev. E 59, R4737–R4740 (1999).

  38. 38.

    Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

  39. 39.

    Lu, X. K., Yu, M. F., Huang, H. & Ruoff, R. S. Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999).

  40. 40.

    Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

  41. 41.

    Zheng, Q. et al. Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

  42. 42.

    Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995).

  43. 43.

    Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

  44. 44.

    Ogletree, D. F., Carpick, R. W. & Salmeron, M. Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996).

  45. 45.

    Liu, Z. et al. A graphite nanoeraser. Nanotechnology 22, 265706 (2011).

  46. 46.

    Ma, M. et al. Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X 5, 031020 (2015).

  47. 47.

    Trambly de Laissardiere, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).

  48. 48.

    Reguzzoni, M., Fasolino, A., Molinari, E. & Righi, M. C. Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86, 245434 (2012).

  49. 49.

    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

Download references


Q.Z. acknowledges the financial support from the NSFC (Grant no. 11572173), the National Basic Research Program of China (Grant no. 2013CB934200), the SRFDP (Grant no. 20130002110043) and the Cyrus Tang Foundation. M.M. acknowledges the financial support from the Thousand Young Talents Program (Grant no. 61050200116) and the NSFC (Grant no. 11632009 and 11772168). Y.M.S. and M.M. thank L. Ge from the NT-MDT Beijing Office and P. Cheng from Oxford Instruments China for their help in experimental device support. O.H. is grateful for financial support of the Israel Science Foundation under Grant no. 1586/17, the Lise Meitner Minerva Center for Computational Quantum Chemistry, the Center for Nanoscience and Nanotechnology at Tel Aviv University, and the Naomi Foundation via the 2017 Kadar Award. M.U. acknowledges financial support from the Deutsche Forschungsgemeinschaft, Grant no. BA 1008/21-2, and the COST Action MP1303. D.M. acknowledges the fellowship from the Sackler Center for Computational Molecular and Materials Science at Tel Aviv University, and from the Tel Aviv University Center for Nanoscience and Nanotechnology.

Author information


  1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China

    • Yiming Song
    •  & Ming Ma
  2. Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China

    • Yiming Song
    • , Ming Ma
    •  & Quanshui Zheng
  3. Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel

    • Davide Mandelli
    • , Oded Hod
    •  & Michael Urbakh
  4. Department of Engineering Mechanics, Tsinghua University, Beijing, China

    • Quanshui Zheng


  1. Search for Yiming Song in:

  2. Search for Davide Mandelli in:

  3. Search for Oded Hod in:

  4. Search for Michael Urbakh in:

  5. Search for Ming Ma in:

  6. Search for Quanshui Zheng in:


M.M., O.H., M.U. and Q.Z. conceived the original idea behind this study. M.M. and Q.Z. designed the experimental aspects of the study, Y.S. performed the experiments and Y.S. and M.M. analysed the experimental data with contributions from all the authors. D.M., O.H. and M.U. designed and analysed the simulations. D.M. wrote the code and conducted the simulations. All authors contributed to the writing of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Ming Ma or Quanshui Zheng.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–19, Supplementary Tables 1–2, Supplementary References 1–29

About this article

Publication history