Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Materials challenges for the Starshot lightsail

A Publisher Correction to this article was published on 12 October 2018

A Publisher Correction to this article was published on 16 August 2018

This article has been updated

The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We predict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vision for the Starshot nanocraft.
Fig. 2: Materials candidates for the Starshot lightsail.
Fig. 3: Photonic design of the Starshot lightsail.
Fig. 4: Absorption mechanisms and values.
Fig. 5: Sail design and stability.

Change history

  • 12 October 2018

    In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: ‘Background image from ESA/Hubble (A. Fujii).’ This has now been corrected in the online versions of the Perspective.

  • 16 August 2018

    In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.

References

  1. Breakthrough Starshot. Breakthrough Initiatives https://breakthroughinitiatives.org/Initiative/3 (2018).

  2. Lubin, P. J. Br. Interplanet. Soc. 69, 40–72 (2016).

    Google Scholar 

  3. Marx, G. Nature 211, 22–23 (1966).

    Article  Google Scholar 

  4. McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications (Springer, London, 2013).

  5. Small solar power sail demonstrator for “IKAROS”. Jaxa http://global.jaxa.jp/projects/sat/ikaros/index.html (2015).

  6. Tsuda, Y. et al. Acta Astronaut. 69, 833–840 (2011).

    Article  Google Scholar 

  7. Hughes, G. B. et al. Proc. SPIE 9226, 922603 (2014).

    Google Scholar 

  8. Fan, T. Y. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).

    Article  CAS  Google Scholar 

  9. Liu, Z., Zhou, P., Xu, X., Wang, X. & Ma, Y. Sci. China Technol. Sci. 56, 1597–1606 (2013).

    Article  Google Scholar 

  10. Brignon, A. Coherent Laser Beam Combining. (Wiley, New York, NY, 2013).

    Book  Google Scholar 

  11. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light. 2nd edn, (Princeton Univ. Press, Princeton, NJ, 2008).

    Google Scholar 

  12. Yu, N. & Capasso, F. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  13. Palik, E. D. Handbook of Optical Constants of Solids. (Academic, San Diego, CA, 1998).

    Google Scholar 

  14. Beal, A. R. & Hughes, H. P. J. Phys. C Solid State Phys. 12, 881–890 (1979).

    Article  CAS  Google Scholar 

  15. Elkorashy, A. M. Phys. Status Solidi 149, 747–758 (1988).

    Article  CAS  Google Scholar 

  16. Aspnes, D. E., Kelso, S. M., Logan, R. A. & Bhat, R. J. Appl. Phys. 60, 754–767 (1986).

    Article  CAS  Google Scholar 

  17. Kannewurf, C. R. & Cashman, R. J. J. Phys. Chem. Solids 22, 293–298 (1961).

    Article  Google Scholar 

  18. Jackson, W. B. & Amer, N. M. Phys. Rev. B 25, 5559–5562 (1982).

    Article  CAS  Google Scholar 

  19. Roxlo, C. B., Chianelli, R. R., Deckman, H. W., Ruppert, A. F. & Wong, P. P. J. Vac. Sci. Technol. 5, 555–557 (1987).

    Article  CAS  Google Scholar 

  20. Amato, G., Benedetto, G., Boarino, L., Maringelli, M. & Spagnolo, R. IEE Proc. A Sci. Meas. Technol. 139, 161–168 (1992).

    Article  CAS  Google Scholar 

  21. Nesládek, M., Vaněček, M., Rosa, J., Quaeyhaegens, C. & Stals, L. M. Diam. Relat. Mater. 4, 697–701 (1995).

    Article  Google Scholar 

  22. Keevers, M. J. & Green, M. A. Appl. Phys. Lett. 66, 174–176 (1995).

    Article  CAS  Google Scholar 

  23. Webber, D. et al. Appl. Phys. Lett. 105, 182109 (2014).

    Article  CAS  Google Scholar 

  24. Jo, M.-H. et al. Thin Solid Films 308–309, 490–494 (1997).

    Article  Google Scholar 

  25. Leventis, N., Sotiriou-Leventis, C., Zhang, G. & Rawashdeh, A.-M. M. Nano Lett. 2, 957–960 (2002).

    Article  CAS  Google Scholar 

  26. Pierre, A. C. & Pajonk, G. M. Chem. Rev. 102, 4243–4266 (2002).

    Article  CAS  Google Scholar 

  27. Zu, G. et al. Chem. Mater. 25, 4757–4764 (2013).

    Article  CAS  Google Scholar 

  28. Wu, S. et al. Thin Solid Films 628, 81–87 (2017).

    Article  CAS  Google Scholar 

  29. Macchi, A., Veghini, S. & Pegoraro, F. Phys. Rev. Lett. 103, (2009).

  30. Johnson, S. G. Read the Docs http://ab-initio.mit.edu/nlopt (2008).

  31. Bendsøe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003) .

  32. Borel, P. I. et al. Opt. Express 12, 1996–2001 (2004).

    Article  CAS  Google Scholar 

  33. Piggott, A. Y. et al. Nat. Photon. 9, 374–377 (2015).

    Article  CAS  Google Scholar 

  34. Alcaraz, J. et al. Phys. Lett. B 490, 27–35 (2000).

    Article  CAS  Google Scholar 

  35. Alcaraz, J. et al. Phys. Lett. B 494, 193–202 (2000).

    Article  CAS  Google Scholar 

  36. Hoang, T., Lazarian, A., Burkhart, B. & Loeb, A. Astrophys. J. 837, 5 (2017).

    Article  Google Scholar 

  37. Zook, H. A. in Accretion Extraterr. Matter Throughout Earth’s History (eds Peucker-Ehrenbrink, B. & Schmitz, B.) 75–92 (Springer, New York, NY, 2001).

  38. Green, M. A. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

    Article  CAS  Google Scholar 

  39. Timans, P. J. J. Appl. Phys. 74, 6353–6364 (1993).

    Article  CAS  Google Scholar 

  40. Rogne, H., Timans, P. J. & Ahmed, H. Appl. Phys. Lett. 69, 2190–2192 (1996).

    Article  CAS  Google Scholar 

  41. Boccara, A. C., Jackson, W., Amer, N. M. & Fournier, D. Opt. Lett. 5, 377–379 (1980).

    Article  CAS  Google Scholar 

  42. Jackson, W. B., Amer, N. M., Boccara, A. C. & Fournier, D. Appl. Opt. 20, 1333–1344 (1981).

    Article  CAS  Google Scholar 

  43. Rosencwaig, A. & Gersho, A. J. Appl. Phys. 47, 64–69 (1976).

    Article  Google Scholar 

  44. Vahala, K. J. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  45. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Nature 425, 944–947 (2003).

    Article  CAS  Google Scholar 

  46. Zammit, U. et al. J. Appl. Phys. 69, 2577–2580 (1991).

    Article  CAS  Google Scholar 

  47. Holovský, J., Remeš, Z., De Wolf, S. & Ballif, C. Energy Procedia 60, 57–62 (2014).

    Article  CAS  Google Scholar 

  48. Yu, G. et al. Appl. Phys. Lett. 70, 3209–3211 (1997).

    Article  CAS  Google Scholar 

  49. Shvets, V. A., Spesivtsev, E. V., Rykhlitskii, S. V. & Mikhailov, N. N. Nanotechnol. Russ. 4, 201–214 (2009).

    Article  Google Scholar 

  50. Mandelis, A. J. Appl. Phys. 54, 3404–3409 (1983).

    Article  CAS  Google Scholar 

  51. Manchester, Z. & Loeb, A. Astrophys. J. 837, L20 (2017).

    Article  Google Scholar 

  52. Rios-Reyes, L. Solar Sails: Modeling, Estimation, and Trajectory Control. PhD Thesis, Univ. Michigan (2006).

  53. Popova, H., Efendiev, M. & Gabitov, I. Preprint at https://arxiv.org/abs/1610.08043 (2016).

  54. Schamiloglu, E. et al. AIP Conf. Proc. 552, 559–564 (2001).

  55. Benford, J. et al. AIP Conf. Proc. 608, 457–461 (2002).

  56. Srinivasan, P. et al. Proc. SPIE 9981, 998105 (2016).

    Article  Google Scholar 

  57. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Nat. Photon. 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  58. Ultra-thin glass. SCHOTT https://go.nature.com/2uQZihl (2018)

  59. Brendel, R. Jpn J. Appl. Phys. 40, 4431–4439 (2001).

    Article  CAS  Google Scholar 

  60. Schwander, M. & Partes, K. Diam. Relat. Mater. 20, 1287–1301 (2011).

    Article  CAS  Google Scholar 

  61. Maleville, C. & Mazuré, C. Solid. State. Electron. 48, 1055–1063 (2004).

    Article  CAS  Google Scholar 

  62. Shi, Y., Li, H. & Li, L.-J. Chem. Soc. Rev. 44, 2744–2756 (2015).

    Article  CAS  Google Scholar 

  63. Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L.-J. Chem. Rev. https://doi.org/10.1021/acs.chemrev.7b00212 (2017).

  64. Petrich, M., Stambke, M. & Bergmann, J. P. Phys. Procedia 56, 768–775 (2014).

    Article  CAS  Google Scholar 

  65. Ogawa, H., Yang, M., Matsumoto, Y. & Guo, W. J. Solid Mech. Mater. Eng. 3, 647–655 (2009).

    Article  Google Scholar 

  66. Zhang, M. Science 306, 1358–1361 (2004).

    Article  CAS  Google Scholar 

  67. Wang, J., Lee, C. H. & Yap, Y. K. Nanoscale 2, 2028–2034 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. Atwater.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atwater, H.A., Davoyan, A.R., Ilic, O. et al. Materials challenges for the Starshot lightsail. Nature Mater 17, 861–867 (2018). https://doi.org/10.1038/s41563-018-0075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0075-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing