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Goal commitment is supported by vmPFC 
through selective attention

Eleanor Holton    1 , Jan Grohn    1,2, Harry Ward3, Sanjay G. Manohar    1,2,4,6, 
Jill X. O’Reilly1,2,6 & Nils Kolling    2,5,6

When striking a balance between commitment to a goal and flexibility 
in the face of better options, people often demonstrate strong goal 
perseveration. Here, using functional MRI (n = 30) and lesion patient 
(n = 26) studies, we argue that the ventromedial prefrontal cortex 
(vmPFC) drives goal commitment linked to changes in goal-directed 
selective attention. Participants performed an incremental goal pursuit 
task involving sequential decisions between persisting with a goal versus 
abandoning progress for better alternative options. Individuals with 
stronger goal perseveration showed higher goal-directed attention in an 
interleaved attention task. Increasing goal-directed attention also affected 
abandonment decisions: while pursuing a goal, people lost their sensitivity 
to valuable alternative goals while remaining more sensitive to changes 
in the current goal. In a healthy population, individual differences in both 
commitment biases and goal-oriented attention were predicted by baseline 
goal-related activity in the vmPFC. Among lesion patients, vmPFC damage 
reduced goal commitment, leading to a performance benefit.

In natural environments, many goals, whether it be pursuing prey, 
cooking dinner or preparing an article for publication, are only 
obtained after persevering through a substantial period of unrewarded 
time and effort. In all these cases, optimal behaviour requires balanc-
ing commitment to the current goal against flexibility to abandon it if 
the goal is no longer worth pursuing relative to alternatives. Psychiatry 
and neuroscience have tended to focus on ‘failures’ of commitment 
during extended behaviours1–3. However, behavioural economics 
provides us with ample examples of people showing ‘too much’ com-
mitment to a goal, particularly after investing time or money4–7. These 
‘sunk-cost’ biases are not unique to humans but have also been found 
in rodents8.

Why might animals show biases towards overpersisting with a 
goal? When behaviour is structured by sequential goals, constant 
re-evaluation can be both expensive and distracting. In consequence, 
it has been proposed that distinct phases of ‘deliberation’ (evaluation 
of available options) and ‘implementation’ (committing cognitive 

resources to achieving the chosen goal) might be present in both 
humans and non-human animals8–13. However, a picture involving 
entirely discrete decision phases fails to explain how animals remain 
flexible to goal abandonment when the situation requires it. A plau-
sible mechanism would allow for the agent to preferentially allocate 
processing resources to goal completion while retaining the necessary 
flexibility.

A candidate mechanism for such flexible focus on a goal is ‘selec-
tive attention’, specifically towards information about the chosen 
goal. Attentional selection need not be all-or-nothing but can vary in 
strength as the need to exclude distractors varies14, thus allowing for 
flexibility. In ecological scenarios, we are faced with different reasons 
for abandoning a goal: progress might be too gradual or might reverse; 
alternatively, other options might become substantially more attrac-
tive. These different forms of pressure give rise to different emotional  
responses: frustration (with the current goal) in the former cases10  
and temptation (by alternative goals) in the latter. If selective attention 
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While the quantities offered for each type of good drifted gradually 
from trial to trial (random Gaussian walk with low variance), sometimes 
the quantity would drastically change for a given good (10% chance of 
a large shift up or down in offered quantity, independent of each type 
of good; see Fig. 1b for example offer trajectories across a block). If 
the quantity associated with the current goal collapsed (‘frustration’) 
or if an alternative good became much more bountiful (‘temptation’), 
participants often benefitted from abandoning their progress and 
switching to an alternative good (Fig. 1b).

Spatial attention task
Participants performed the decision task first inside the fMRI scan-
ner and then in a separate behavioural session outside the scanner. 
Outside the scanner, in addition to the main decision task, partici-
pants performed an interleaved spatial attention task before every 
trial, providing a separate measure of attentional prioritization of the 
current goal (Fig. 1c, left). Participants viewed the stimuli associated 
with the three goods flashed on the screen and were then prompted 
to report the three item locations with a mouse click (stimuli were 
probed in a random order). While the spatial attention task involved the 
same ‘seafood’ stimuli, participants were explicitly told that memory 
performance would not impact subsequent offers in the decision task 
(see Extended Data Fig. 1 for full illustration of the task presentation 
and scanner variants).

People show greater goal commitment than an optimal model
Because of the need to commit to a good for many trials to realize the 
reward (delivered on the completion of a full net), a good decision is 
based not only on the current offer, but also on the quantity already in 
the net and projections of future offers (see Extended Data Fig. 2). To 
understand how participants made such projections, we constructed 
a series of models reflecting increasingly complex possible strategies 
(see Methods and Extended Data Fig. 3 for details of models including 
validation and fitting procedures). The participants’ behaviour was best 
described by the most complex model we tested (‘tree-search model’; 
Fig. 2a), which provides an approximation of the optimal choice. This 
model samples possible future trajectories for the option offers using 
the true generative procedure and selects the option which is predicted 
to fill the net fastest when averaging across the sampled trajectories 
(Monte Carlo sampling of offer trajectories).

While choice strategies were best described by the tree-search 
model rather than simpler heuristics, people tended to overpersist 
with their current goal beyond the model’s predictions. Persistence 
biases were quantified as an individual’s deviation away from the 
tree-search model, in terms of their reluctance to abandon the current 
goal beyond the model’s abandonment predictions (Fig. 2b; persistence 
biases are significantly greater than zero (Wilcoxon Z = 4.78, n = 30, 
P = 1.73 × 10−6)). This metric of persistence bias had good test-retest 
reliability within participants across sessions (intraclass correlation 
coefficient = 0.76, P = 0.002, 95% confidence interval (CI) = (0.25, 1.0); 
Extended Data Fig. 4d). Compared with the optimal model, people 
were more reluctant to abandon their goal the more progress they 
made towards finishing (main effect of proportion of net completed 
on top of tree-search model switch value: X2(1, N = 30) = 5.27, P = 0.022; 
illustrated by binning in Fig. 2c; see Extended Data Fig. 3 for additional 
information about goal progress, and Extended Data Fig. 5 for compari-
son with tree-search model behaviour).

Commitment is linked to higher goal-oriented attention
We predicted that goal-oriented attention and decision-making biases 
would be related during goal pursuit. To measure goal-oriented atten-
tion, we investigated how attention was distributed between stimuli 
associated with the current and alternative goals in a decision-free 
spatial attention task interleaved between decisions. Since the spatial 
attention task was not possible to perform using a button box inside 

to the chosen goal increases over the course of goal pursuit, this leads 
to a rather specific prediction about the interaction of ‘temptation’ and 
‘frustration’ with increasing proximity to the goal: namely, sensitivity 
to the value of alternative goals (‘temptation’) should decrease more 
than sensitivity to the value of the chosen goal (‘frustration’). Our first 
aim was to test whether attention and decision making showed these 
markers of increasing attentional orientation towards the current goal 
over the course of goal pursuit. To test this, we orthogonally vary the 
value of the current goal and the value of alternative goals at the time 
of decision, as well as continuously measure goal-oriented attention 
outside the decision period.

Our second aim was to investigate how goal commitment is 
achieved on a neural level. The ventromedial prefrontal cortex 
(vmPFC) has previously been shown to flexibly represent choice values 
according to the agent’s current goal15–20, linked to the compression 
of task-irrelevant information21. In addition to this body of research 
implicating the vmPFC in task-specific cognitive maps, a separate line  
of research has identified a key role for baseline vmPFC activity in  
carrying contextual information which biases subsequent choices 
in line with a previous behavioural strategy22–24. While the vmPFC 
represents attributes relevant to the current goal across extended 
timescales25, the anterior cingulate cortex (ACC) has been shown to 
represent information about ‘alternative’ goals and the value of shifting 
away from the current strategy26–32.

Using a novel task in combination with (1) computational model-
ling of behaviour, (2) functional magnetic resonance imaging (fMRI) 
and (3) behavioural analysis of patients with brain lesions, we inves-
tigated how goal commitment develops during goal pursuit. In our 
sequential choice task, participants advanced incrementally towards 
completing a chosen goal in the face of alternative goal offers. Par-
ticipants showed a universal ‘goal commitment’ bias towards persist-
ing with their current goal, even in circumstances when they would 
greatly benefit from abandoning it. We were able to measure several 
markers of selective attention to the current goal. First, as predicted 
by the attentional account, we found that decision making reflected 
goal-directed attention: as participants approached goal completion, 
their decisions remained relatively more sensitive to the value of the 
current goal than to the value of alternatives. Second, using a separate 
spatial working-memory task, we found that even outside the decision 
period, stimuli related to the current goal were increasingly prioritized 
in attention.

Using fMRI, we found that across participants, the degree to which 
baseline vmPFC tracked progress with the current goal predicted both 
attentional and decision-based metrics of goal capture. To probe the 
causal role of this signal, we ran the same paradigm in an independ-
ent sample of patients with brain damage; indeed, damage to the 
same area of the vmPFC identified in the fMRI study predicts lower 
over-commitment to the current goal resulting in a performance benefit.

Results
Primary decision task
Participants performed a ‘fishing net’ task with the aim of filling as 
many nets with seafood as possible over the course of the study (Fig. 1).  
Participants accumulated seafood ‘goods’ over several trials and  
only gained a reward when the net was full. On each trial, participants 
chose between offers for three types of good (octopus, crab or fish), 
where the quantity available for each good was shown by a green bar. 
Once selected, the offered quantity would be immediately added to 
the net. Importantly, only a single type of good could be collected in 
the net at once. This meant that if participants chose a different type 
of good from the type currently in their net, they would forfeit all their 
previously accumulated goods (‘abandonment choice’). Alternatively, 
participants could choose to continue with the current goal by choos-
ing to collect the same good already in the net (‘persistence choice’; 
see Fig. 1a for example).
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the scanner, we investigated these attentional biases in a separate test-
ing session conducted outside the scanner. In the post-scan session, 
trials of the spatial attention task were interleaved with new trials of 
the main decision task.

In the spatial attention task, participants were asked to report 
the location of briefly flashed fish, octopus and crab symbols using a 
mouse click. Indeed, participants were both more accurate and faster 
at reporting the location of the currently pursued goal stimulus com-
pared with the alternative goal stimuli (Fig. 2e; two-sided paired t-test; 
accuracy advantage for current goal: t(29) = 2.25, P = 0.032, Cohen’s 
d = 0.42; reaction time advantage for current goal: t(29) = 3.30, P = 0.003, 
Cohen’s d = 0.61). This accuracy difference was primarily driven by  
progressive memory enhancement for the goal stimulus: spatial  
accuracy for the current goal stimulus increased with the number of 
trials participants had been pursuing the current goal (Fig. 2f; effect 

of pursuit time on goal item accuracy: two-sided t-test against zero, 
t(29) = −2.65, P = 0.013, Cohen’s d = 0.44; there was no significant effect of 
pursuit time on accuracy for alternative stimuli: two-sided t-test against 
zero, t(29) = −0.033, P = 0.974, Cohen’s d = 0.006). In a direct compari-
son, there was a significant difference between slopes for the effect of  
goal pursuit on selected and alternative goal items (Fig. 2f; two-sided 
paired t-test, t(29) = −2.37, P = 0.024, Cohen’s d = 0.44). This effect 
occurred even though the spatial task was performed outside the 
decision period and participants knew their performance on this 
interleaved task would not affect subsequent offers, suggesting a 
true attentional bias towards the chosen goal that increases with  
goal commitment.

This metric of attentional prioritization of the goal directly pre-
dicted individual differences in persistence biases: people who showed 
more goal-directed attention demonstrated higher persistence biases 
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Fig. 1 | Experimental design. a, Participants performed a ‘fishing net’ task that 
involved incrementally filling nets with seafood ‘goods’. Top: on each trial, bars 
indicate the current available quantities of each type of good (octopus, crab 
or fish) which participants could add to their net. The current net contents are 
shown in a separate bar at the bottom of the screen. Critically, since the net 
could contain only one type of good, switching goods meant forfeiting the 
pre-existing net contents. Bottom left: if participants continued with the same 
good, the offered quantity was added to the existing net contents. Bottom right: 
if participants chose a different good, the accumulated contents were emptied 
before the new goods were added. Participants received a single reward when a 
net was completed, and the net size and option offers were reset. b, An example 
block where a participant switches goods twice. Top: coloured lines depict the 
offers associated with each type of good across a block. Black dots depict the 
good chosen by the participant on each trial. During a block, the offers associated 

with each good varied gradually across trials with independent random walks, 
but could also jump to extreme high or low values (from where the random walk 
would continue). Bottom: bars depict the goods accumulating in the net, where 
icon and colour depict the type of good. Dashed line depicts the net size. c, Task 
sequence. Outside the scanner, participants performed the same decision task, 
with an additional interleaved spatial attention task performed on every trial. 
Participants viewed the three goods flashed on the screen in random locations 
and were then probed on the location of each good. Participants knew that their 
performance in the spatial task had no impact on subsequent offers. d, Example 
experimental timeline. The task always ended after a predetermined number 
of trials incentivizing participants to make strategic choices to maximize nets 
completed within the limited number of trials. Red dots indicate trials where 
the participant chose to switch. Shading indicates the varying sizes of the nets. 
Yellow lines indicate when a net was completed.
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(Fig. 2g; note that this relationship holds even when attention biases 
and decision biases originate from separate behavioural testing ses-
sions; using persistence biases fit to data from scanner-only session: 
Spearman’s r = 0.50, P = 0.005, two-sided, 95% CI = (0.17, 0.73); using 
persistence biases from data aggregated across both scanner and 
post-scan sessions: Spearman’s r = 0.53, P = 0.003, two-sided, 95% 
CI = (0.20, 0.75)). This demonstrates that an individual’s tendency  
to overpersist with the current goal is related to their allocation of 
selective attention towards the current goal.

Goal abandonment due to ‘temptation’ versus ‘frustration’
How does progress towards a goal affect peoples’ sensitivity to the 
value of switching away to an alternative? Pressure to abandon the 
current goal comes from two directions: an alternative good might 
become more attractive, pulling the agent towards the better option 
(‘temptation’) or the value of the goal good might collapse, pushing the 
agent away from the current goal (‘frustration’; see Fig. 1b for example). 
Given that participants displayed increasing goal-oriented attention, 
we predicted that as a consequence, value associated with alterna-
tive goals would impact behaviour less than value associated with the  
current goal over the course of goal progress.

We found that people indeed showed an asymmetry in their 
use of these value sources compared with the optimal model, which 
developed during goal pursuit. To test this, we predicted abandon-
ment choices in a regression model using the interaction between goal  

progress and each source of value according to the tree-search model. 
Both sources of value impact behaviour less over the course of goal  
progress (alternative value × goal progress: two-sided t-test of beta 
weights against zero, t(29) = 7.97, P = 8.57 × 10−9, Cohen’s d = 1.48; current 
goal value × goal progress: t(29) = 7.09, P = 8.48 × 10−8, Cohen’s d = 1.32). 
However, this loss of influence on behaviour affected alternative goal 
value more than current goal value (difference between slopes: two-sided 
paired t-test, t(29) = 3.39, P = 0.002, Cohen’s d = 0.63, visualized in  
Fig. 2d by binning the data). In other words, over the course of  
goal pursuit, the impact of temptation from alternatives fades  
more rapidly than the impact of frustration with the current goal.

fMRI results
vmPFC activity tracks goal progress between decisions
Our behavioural analyses showed pervasive effects of goal pursuit 
on attention even outside the decision-making period. We reasoned 
that the brain regions involved in these attentional biases should 
similarly show goal-progress-related neural activity persisting out-
side the decision period. We conducted a whole-brain general linear 
model (GLM) analysis focusing on the intertrial period, modelling 
blood-oxygen-level-dependent (BOLD) activity using regressors  
capturing an individual’s position in the goal (goal progress: propor-
tion of target completed), the value of the current goal and the value  
of the best alternative in the previous trial (according to the tree- 
search model), and the decision itself (binary abandonment versus 
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Fig. 2 | Behavioural results. a–d, Decision task. a, The tree-search model 
(approximating optimal behaviour) captured choices better than simple 
heuristic models. Mean ± s.e.m. of cross-validation accuracy (n = 30 participants). 
CV, cross-validation. b, Probability of goal abandonment as a function of the tree-
search value of abandonment. Although the tree-search model captured choices 
best, people showed an additional bias towards persisting. Bold line shows fits 
across all participants; transparent lines show individual participants (n = 30). 
Green dots indicate indifference to abandonment, used as an index of individual 
persistence biases. c, Across individuals, persistence biases increased with goal 
progress (that is, proportion of the net completed). Successive purple lines show 
probability of abandonment as a function of tree-search abandonment, binned 
by goal quartile (shown for illustration). d, Over the course of goal pursuit, the 
impact of temptation (attractive alternatives) disappeared more than the impact 
of frustration (collapse in the current goal value). Blue and orange lines depict the 
influence of current goal value and (sign-flipped) best alternative goal value on 
abandonment choices across goal pursuit. Mean ± s.e.m. of beta weights (n = 30 

participants). e,f, Attention task. e, In the interleaved spatial task, both reaction 
times (left) and memory error (right) were lower for the current goal stimulus 
(blue) compared with alternative goal stimuli (orange). Mean ± s.e.m. of RT and 
error are plotted (n = 30 participants); stars indicate two-sided paired t-test; 
RT difference: t(29) = 3.30, P = 0.003; error difference: t(29) = 2.25, P = 0.032. f, As 
participants invested more trials in a particular goal, spatial error decreased for 
the goal stimulus (blue) but not for alternative goal stimuli (orange). Mean error 
is plotted against trials pursuing the goal; dots show binned means ± s.e.m., with 
added regression lines (shaded region indicates s.e.m. of regression lines across 
participants; n = 30 participants). g, Relationship between decision and attention 
tasks. Individuals showing greater goal-oriented attention had higher persistence 
biases (Spearman’s r = 0.50, P = 0.005, two-sided, 95% CI = (0.17, 0.73)). Spatial 
error enhancement for the current goal compared to alternative goals (from e, 
right) is plotted against persistence bias (from b, green). Persistence biases and 
attention biases come from separate testing session data (inside and outside the 
scanner, respectively).
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persist choice; see Extended Data Fig. 6 and Methods for full details 
of neural GLM). In addition, we controlled for decision-related activity 
by adding all of these regressors at decision time (time-locked to the 
onset of offers; see Extended Data Fig. 7 for additional goal progress 
controls). We found that the peak of activity tracking goal progress 
during the intertrial period was in the vmPFC (Fig. 3b).

Pre-decision vmPFC predicts differences in goal commitment
Previous studies have found that baseline vmPFC activity (activity 
before a decision) predicts biases or priors which affect subsequent 
decision-making22–24. As vmPFC tracks goal progress between deci-
sions, we hypothesized that the strength of the baseline vmPFC signal  
(Fig. 3c) would predict the degree of commitment bias (unwillingness 
to switch goods) across individuals.

We extracted baseline activity on a trial-by-trial basis in our vmPFC 
region of interest (ROI) and quantified the extent to which pre-decision 
activity was tracking goal progress for each individual. We found  
that this baseline goal-related activity correlated with an individual’s 
overall persistence bias during the decision-making task (Spearman’s 
r = 0.46, P = 0.011, two-sided, 95% CI = (0.12, 0.70); Fig. 3d; see control 
analyses in Extended Data Fig. 8).

If baseline vmPFC activity also reflects the degree to which atten-
tion is oriented towards the current goal, we reasoned that it should 
also correlate with differences in goal-directed attention in the second, 

decision-free task. This was indeed the case: across participants, the 
strength of the baseline goal–progress signal in the vmPFC predicted 
greater accuracy for the current goal relative to alternative goals in the 
attention task (Spearman’s r = 0.48, P = 0.007, two-sided, 95% CI = (0.15, 
0.72); Fig. 3e). This was particularly striking as the spatial decision-free 
task was carried out in a separate session outside the scanner.

Neural activity related to goal pursuit at decision time
We investigated neural activity at the time of the decision in a 
whole-brain analysis (regressors time-locked to the onset of the 
offers). The decision-time analyses revealed a much broader net-
work of areas sensitive to goal pursuit. Specifically, as an individual 
progressed towards completing the goal, activity in a wide range  
of areas increased, including the medial prefrontal cortex, stria-
tum and cingulate areas, as well as large regions of the occipital and  
parietal cortices (‘goal progress’ regressor; Fig. 3a). Note that while 
this wide range of neural areas tracked goal progress during the  
decision, only a subset of areas focused on the vmPFC continued to 
track progress during the intertrial period as previously described 
(Fig. 3a,b).

In addition, we found value-related activity consistent with pre-
vious studies engaging brain networks in choices between staying  
with a default versus switching to an alternative. Both medial pre-
frontal cortex and striatum increased their activity as the value of 

a

x = 0 x = 0

b c

Alternative goal value

Goal progress Current goal valueGoal progress

d e

At decision time Between 
decisions

Baseline goal progress

0.2

0.1

Ba
se

lin
e 

vm
PF

C
go

al
 p

ro
gr

es
s 

(β
)

Ba
se

lin
e 

vm
PF

C
go

al
 p

ro
gr

es
s 

(β
)

Goal-oriented attention
(spatial task)

Persistence bias
(decision task)

0

0.2

0.1

–0.1

0

0 2 4 6 8 10

Time from o�er onset (s)

E�
ec

t o
n 

vm
PF

C
 B

O
LD

 (β
)

12

0.1

0

2 4 6 8

r = 0.48
P = 0.007

r = 0.46

P = 0.011

–0.02 0 0.02

Fig. 3 | Goal-related baseline vmPFC activity correlates with individual 
differences in behaviour. a, Cluster-corrected activity representing goal 
progress time-locked to the onset of the decision period. b, Cluster-corrected 
activity representing goal progress time-locked to the intertrial fixation cross 
(see ‘Whole-brain intertrial analysis’ in Methods). While there was widespread 
activity in the occipital and parietal areas at decision time (a), the majority of 
these areas did not track goal progress ‘between’ decisions, where the highest 
peak was in the vmPFC. c, Time course of vmPFC activity at the onset of option 
offers, depicting the impact of goal progress (purple), current goal value (blue) 
and best alternative value (orange) at decision time (beta weight on BOLD 
activity). Error bars show s.e.m. across participants. We follow previous studies 
by defining baseline activity as the unconvolved neural activity at offer onset23, 
which due to the haemodynamic delay captures ‘pre-decision’ activity rather 
than decision-related activity (Extended Data Figs. 7 and 8). d, Relationship 

between baseline goal tracking in the vmPFC and goal-oriented attention 
(Spearman’s r = 0.48, P = 0.007, 95% CI = (0.15, 0.72)). The baseline measure 
corresponds to the impact of goal progress on activity in the vmPFC ROI at the 
moment of choice onset (c). Goal-oriented attention refers to the accuracy 
advantage for remembering the current goal location compared to alternative 
goal locations in the spatial attention task (Fig. 2e, right). Note that the attention 
measure comes from a separate testing session outside the fMRI scanner.  
e, Relationship between baseline goal tracking in the vmPFC and persistence 
biases in the decision task (Spearman’s r = 0.46, P = 0.011, 95% CI = (0.12, 0.70)). 
Notably, the relationships between neural activity and behavioural goal biases 
are specific to baseline activity in the vmPFC; baseline activity in other regions of 
interest and vmPFC activity in response to the decision itself are not predictive 
of behavioural biases (see Extended Data Fig. 8 for control analyses at key 
timepoints and regions).
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persisting with the goal increased (value of current goal–value of best 
alternative; Fig. 4a, blue; time-course of vmPFC value-related activity 
shown in Fig. 3c). In contrast, the ACC, presupplementary motor area 
(preSMA), bilateral dorsolateral prefrontal cortex (dlPFC) and bilateral 
insular all showed the opposite profile: activity increased as the value 
of abandonment increased (value of best alternative–value of cur-
rent goal; Fig. 4a, orange) and activity was higher on trials where the 
participant chose to abandon the current goal (Extended Data Fig. 6b;  
see Extended Data Table 1 for activity peaks). We included response 
times as an additional control regressor, previously argued to be a 
proxy for choice confidence33,34. We found that ACC activity was also 
higher when participants were slower to respond, but we found no 
relationship between response times and vmPFC activity (Extended 
Data Fig. 6e).

The striatum shows decreasing sensitivity to alternative goals
As attention to the current and alternative goals varies with goal pursuit, 
we should expect to see changes in neural representations of these 
goals. In particular, in behaviour we observed an intriguing asymmetry, 
namely, that as goal commitment increased, sensitivity to alternative 
goal value (‘temptation’) was reduced more than sensitivity to the cur-
rent goal value (‘frustration’). We therefore asked how value signals 
relating to the current and alternative goals change as a function of 
goal pursuit.

Parallel with our behavioural results, we found an asymmetry 
between how goal pursuit affected signals relating to alternative and 
current goal value in the ventral striatum. Specifically, representations 
of alternative value disappeared in the ventral striatum over the course 
of goal pursuit, but activity continued to covary with the current goal 
value (Fig. 4b, left; interaction between best alternative value and goal 
progress: Wilcoxon signed rank, Z = 2.37, P = 0.009, n = 30, one-sided; 
interaction between current goal value and goal progress: Wilcoxon 
signed rank, Z = −1.03, P = 0.152). This mirrored the behavioural finding 
that people became relatively less sensitive to temptation by alternative 
goods, while maintaining sensitivity to the value of the chosen goal, 
over the course of goal pursuit. In contrast, there was no significant 
change in the representation of alternative value over goal pursuit in 
either vmPFC (Z = 1.19, P = 0.116) or ACC (Z = 0.39, P = 0.348).

Lesion patient study
Damage to vmPFC reduces commitment bias for the current 
goal
Taken together, the behavioural and fMRI results suggest that  
the vmPFC maintains attention to the chosen goal, leading to over-
persistence or an unwillingness to switch goals. To test the causal 
nature of this association, we conducted an independent study  
using the same paradigm, with a sample of 23 participants with brain 
lesions in variable locations (see Fig. 5a for map of lesion overlap across 
patients). We focused on persistence bias, defined as the tendency 
to persist with the chosen goal beyond the point at which it would be 
optimal to switch, as the key behavioural marker of goal commitment.

We began by investigating whether damage to particular areas 
reduced persistence in the lesion patient group, independent from 
any priors from our fMRI study. We asked at what locations damage 
predicted a reduction in persistence bias by running a voxelwise regres-
sion analysis using damage in each voxel (binary regressor) to predict 
persistence bias. Independently corroborating the findings of our 
fMRI study, the only region where damage predicted a reduction in 
persistence bias was an area in the vmPFC (Fig. 5b, green cluster).

We then asked how much the region identified in our lesion patient 
study aligned with the findings of our fMRI study. Our fMRI study had 
identified a subset of areas carrying signals relating to goal pursuit even 
between decisions, focused on the vmPFC. We split all patients into two 
groups on the basis of whether they were damaged within a region of inter-
est at the peak of this fMRI activity, found in the vmPFC (region of inter-
est centred on the peak of the activity tracking goal progress during the 
intertrial interval (ITI) in our fMRI study; shown in Extended Data Fig. 9d). 
There were four lesion patients with damage to this region of interest, and 
this group had reduced persistence biases compared with patients with  
damage elsewhere and with age-matched healthy controls (Fig. 5c). 
We found that these four patients who had damage within the region 
pre-defined by our fMRI study corresponded to four (out of the five total) 
patients identified from our independent voxelwise patient analysis. There-
fore, our fMRI study and lesion patient study independently converge to 
identify the same vmPFC region as being relevant for goal commitment.

Next, we ruled out the possibility that the vmPFC-damaged group 
were simply performing worse in some general way, for example, by 
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making random choices or forgetting the goal. An important point to note 
is that, because participants in general overpersist, a reduction in persis-
tence biases should actually lead to an improvement in task performance, 
if participants switch goals at points at which it is beneficial to do so (rather 
than making random switches due to, for example, task disengagement). 
This is exactly what we found: the five vmPFC-damaged patients identi-
fied in our voxelwise analysis in fact performed significantly better than 
patients with damage elsewhere and no worse than age-matched healthy 
controls (Fig. 5d; performance was quantified as mean trials to fill a net, 
so smaller values indicate goals are completed faster).

Finally, we used further post hoc analyses to verify that (1) vmPFC 
patients were not responding more stochastically and (2) vmPFC 
patients were not using a different normative model to solve the task. 
We formally quantified stochasticity as inverse temperature and found 
that the vmPFC group showed no difference in inverse temperature 
compared with other patients or age-matched controls (Extended 
Data Fig. 9b; see recoverability of inverse temperature parameter in 
Extended Data Fig. 4c). We also found that, similar to the MRI par-
ticipants, decisions for all three groups in our lesion study are best 
described by the tree-search model (Extended Data Fig. 9a), suggest-
ing that vmPFC patients were not using a simpler response heuristic.

Taken together, these results suggest that patients with damage to 
this region of the vmPFC are not simply using a different task strategy 
or responding more randomly, but instead are less biased towards 
overpersisting with a goal.

Discussion
Many rewards are only obtained after a period of persistent effort. 
Therefore, a key challenge for agents is to maintain a balance between 
commitment with the current goal and flexibility if it ceases to be 
worthwhile. The current study presents evidence that the shift towards 

goal commitment is supported by the vmPFC and relates to mecha-
nisms of goal-oriented selective attention. It is well known that people 
tend to overpersist with chosen goals (the ‘sunk-cost’ fallacy). Rather 
than representing persistence biases as a (perhaps irrational) factor 
in the decision process itself, we argue that it is better understood in 
terms of a more pervasive attentional effect: mechanisms of selective 
attention, mediated by the vmPFC, prioritize information related to 
the current goal over alternative goals, resulting in reduced sensi-
tivity to attractive alternatives (‘temptation’). This attentional bias 
is sustained in time and generalizes outside the decision context, 
as participants showed reduced sensitivity to sensory features of 
goal-irrelevant stimuli (such as their location in space), particularly 
as the goal state is approached.

We developed a pair of complementary tasks to measure how 
attentional and decision-making biases develop together during goal 
pursuit. In the decision-making task, commitment to a goal is required 
to realize rewards, but to perform well at the task, participants must 
also remain sensitive to changes in the value of the current and alter-
native goals. Participants tended to persist with goals longer than was 
optimal. As people progressed towards the goal, they became less 
sensitive to the value of alternative goals compared with the value of 
the current goal, suggesting an increasing focus of attention on the 
current goal as they neared goal completion. We further probed this 
attentional account by interleaving the decision task with an unrelated 
and decision-free spatial working-memory task. We found that partici-
pants were better able to recall the location of stimuli associated with 
the current goal and this tendency increased as they continued longer 
with the goal. Furthermore, there were stable individual differences in 
persistence with a goal, which were predicted by individuals’ sustained 
goal-directed attention outside the decision period. Individuals who 
were more biased to persist with a goal showed higher goal-oriented 
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Fig. 5 | Lower goal commitment in patients with vmPFC lesions. a, Lesion 
overlap maps of the 23 patients who took part in the study (maximum overlap in 
a voxel was 10 participants). b, Results from the whole-brain voxelwise analysis. 
Green shows areas where lesion damage predicts lower persistence biases. 
Above-threshold t-statistics (t > 2.3 before cluster correction) are displayed for 
illustrative purposes. We controlled for multiple comparisons by performing 
cluster correction using FDR described in Methods. Only the vmPFC cluster 
survived whole-brain cluster correction (cluster threshold t > 2.3 (P < 0.01, one-
sided), cluster size = 269 voxels, threshold cluster correction size = 255 voxels, 
cluster peak = (0,42,−14), t-statistic at cluster peak = 2.74, n = 5 patients with 
damage within cluster). c, Patients with damage to the vmPFC region identified 
in the fMRI study show reduced persistence bias. Patients were split into two 
groups depending on whether they were damaged within a region of interest 
centred on the peak of BOLD activity tracking goal progress between decisions in 
healthy participants. This area was damaged in 4 patients, corresponding to 4 out 
of the 5 patients independently identified in the voxelwise analysis in b. Patients 

with damage to this region showed lower goal commitment than patients with 
lesions elsewhere and age-matched controls (one-sided permutation test 
for lower persistence biases in vmPFC-damaged group compared with other 
lesion patients: difference in means = 3.79, P = 0.012; lower persistence bias in 
vmPFC-damaged group compared with age-matched controls: difference in 
means = 2.97, P = 0.023). Error bars show s.e.m. in each group; green dots depict 
individual biases. d, Post hoc analysis showing that patients with damage within 
the identified vmPFC region from the voxelwise analysis shown in b performed 
better than other lesion patients and no worse than age-matched healthy 
controls. Performance was measured as the average number of trials to complete 
a goal, where lower scores correspond to faster goal completion (one-sided 
permutation test for faster performance in the vmPFC group compared with 
other lesion patients: difference in means = 0.76, P = 0.015; faster performance 
in the vmPFC group compared with age-matched controls: difference in 
means = 0.32, P = 0.190, not significant (NS)).

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01844-5

selective attention, even when these metrics were captured in separate 
testing sessions and an unrelated, decision-free task.

We present multiple converging lines of evidence demonstrat-
ing that the vmPFC plays a key role in this process. First, our fMRI 
study found that the vmPFC carries sustained goal-related information 
between decisions in our task, and baseline activity before the decision 
predicts the two independent behavioural metrics of goal capture: 
both an individual’s bias to persist with the current goal and their bias 
to prioritize goal-related stimuli in attention. This was the case despite 
the fact that attention was measured during a separate task outside of 
the scanner. Second, we show that the vmPFC is causally involved in goal 
commitment: patients with damage to the same region have reduced 
biases to persist with the current goal.

In various contexts, the medial prefrontal cortex has been shown 
to support the selection of goal-relevant information35–37, flexibly 
adapting to changes in the current goal15–19 possibly through compres-
sion of goal-irrelevant information21. Other studies have also linked 
vmPFC activity to visual attention specifically, both in responding 
to exogenous manipulations of attention38,39 and in mediating visual 
attention40. Here we present results bringing together these distinct 
bodies of research, suggesting that the role the vmPFC plays in selecting 
goal-relevant information is linked to visual attention.

We find that across healthy individuals, baseline vmPFC activity 
(activity before a decision is made) predicts both decision and attention 
biases in our task. This builds on growing evidence in both monkeys  
and humans finding that baseline vmPFC activity plays a role in influ-
encing how options are processed and subsequently, which choice is 
made22–24. Baseline vmPFC activity has been argued to bias upcoming 
choices in line with prior contextual factors, including both stable 
preferences (such as tastes in music or food types22) and dynamic  
states (such as satiety or mood23,24). Our results provide evidence 
that another dynamic state, namely, pursuit of a chosen goal, modu-
lates behaviour through baseline vmPFC activity. We argue that our  
results also offer a possible mechanism for these effects: sustained 
vmPFC activity could drive global changes in top-down attention, 
affecting how options are processed and which decision is subse-
quently made.

In theory, the vmPFC could vary with goal-relevant information 
without playing any causal role in the decision process. To test the 
causality of vmPFC activity in goal persistence, we carried out an 
independent study using the same paradigm with 23 lesion patients. 
Through a voxelwise analysis of damage in our patient sample, we 
identified a vmPFC cluster in which damage predicted reduced persis-
tence biases. The area identified in patients closely corresponded to 
the area involved in persistence among healthy individuals, providing 
striking evidence that vmPFC plays a causal role in goal commitment. 
Our results expand on previous reports that lesions to this area in both 
humans and primates interfere with the ability to prioritize relevant 
decision variables, for example, in cases when a distracting alternative 
is introduced41,42, or an option has been de-valued43.

While previous lesion studies have found this patient population 
to behave more stochastically41,44, notably lower persistence biases 
among vmPFC lesion patients in our task cannot be explained by an 
increase in stochasticity. In fact, we find that patients with vmPFC 
damage performed better than other lesion patients and no worse than 
age-matched controls. In a goal-pursuit context, healthy individuals 
may have a tendency to overconstrain the decision space by focusing 
only on the current goal and ignoring alternatives. In contrast, a lesion 
to this area of vmPFC may reduce selective attention to the goal, allow-
ing alternatives to maintain their relevance throughout goal pursuit. 
We note that, while this is beneficial in our task, it is likely to be advanta-
geous to constrain the task space in ecological goal-pursuit settings, 
both in terms of optimal neural resource allocation (that is, attending 
to goal implementation and avoiding cognitive switch costs) and in 
structuring behaviour over time.

Our results also reveal how neural value representations change 
dynamically across goal pursuit, consistent with attentional prioritization 
of the current goal. We found that late in goal progress and compared with 
an optimal model, people demonstrated reduced sensitivity to the value 
of alternative goals compared with the value of the current goal. When 
the value of alternatives lost influence over behaviour, this was mirrored 
by a reduction in the representation of alternative value in the ventral 
striatum over goal pursuit. While we are not aware of other studies show-
ing this pattern, the ventral striatum is known to respond to goal pursuit, 
for example, through striatal dopamine ramps during goal approach45,46.

We found that both the ACC and dlPFC positively covaried with the 
value of abandonment, and were more active when participants chose 
to abandon. This is consistent with previous work showing that activa-
tion in these areas and in the ACC in particular represents the value of 
alternative options27 and is more active when an individual disengages 
from the present action32,47 or explores the environment19,31. In fact, 
when people switch out of an exploitative state towards exploration, 
ACC activity predicts changes in task representation in the vmPFC48. 
While the vmPFC represents the current goal and enables goal com-
mitment, the ACC is likely to underpin behavioural flexibility during 
goal pursuit by consistently tracking other options. In contrast to the 
striatal effects, we found relatively sustained representations of alter-
native options throughout the goal in the ACC, supporting previous 
studies showing that the ACC drives flexibility. The fact that people 
show increasing biases to persist rather than remain flexible could be 
explained by increasing dominance of regions such as the vmPFC over 
the ACC. We note that the vmPFC-lesioned patients in this study made 
effective abandonment choices that allowed them to perform well in 
the task. While the vmPFC contributes to persistence biases, it does not 
seem necessary for making appropriate abandonment choices, which 
are likely to depend on other areas such as the ACC.

There are limitations to how the attentional effects are interpreted 
in this study. The goal-directed attentional biases observed could 
stem from either memory-guided ‘top-down’ orientation towards 
goal-relevant information49,50 or ‘bottom-up’ attentional capture from 
the high-incentive salience of goal-related stimuli51–53. While our task 
cannot definitively distinguish between these possibilities, one rele-
vant consideration is how quickly attention shifts towards the new goal 
stimulus, rather than reflecting the reward history of stimuli across the 
study. This rapid attentional adaptation to new goals may be evidence in 
favour of goal-directed attentional orientation (although some studies 
have found goal congruency to be stronger predictors of attentional 
capture than long-run value37,54). The top-down attention interpreta-
tion is also consistent with previous evidence of vmPFC involvement 
in memory-guided attention50,55.

We have argued that activity in the vmPFC relates to persistence 
with a goal. However, previous studies have shown that vmPFC activ-
ity is also related to decision confidence33,56. Since choices to per-
sist with partially completed goals tend to be associated with higher 
confidence than choices to start again with an alternative goal, it is 
important to consider whether this could be a potential confound. 
Using response times as a proxy for confidence, we did not find any 
relationship between vmPFC activity and response times, suggest-
ing that vmPFC activity is not obviously related to simple measures 
of decision confidence in our task. One possible explanation for this 
disparity with previous findings could relate to the specific setting of 
incremental goal pursuit. If there is a strong default to persist with the 
current goal during goal pursuit, vmPFC activity may not track trialwise 
variations in confidence associated with offers unless a drastic change 
prompts re-evaluation of the goal.

Our study suggests that goal pursuit leads to global changes in 
how the environment is processed, implemented through alterations 
in vmPFC activity. Goal-directed selective attention provides a mecha-
nism by which animals can prioritize goal completion while remaining 
sensitive to exceptional alternatives, since attentional selection itself 
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can be graded14. While goal commitment may manifest in seemingly 
irrational tendencies to persist with a previous decision, the ability 
to filter information to prioritize a selected task would be critical in 
ecological settings.

Methods
MRI study
Participants. A total of 31 participants (19 female; mean age 25 years, 
normal or corrected-to-normal vision) were recruited via email circu-
lation on Oxford University mailing lists and social media. One par-
ticipant was excluded from the recruited sample because they opted 
out of the study before the MRI scan, leaving a total of 30 participants 
whose data are analysed in this study. No statistical methods were used 
to pre-determine sample sizes, but our sample sizes are similar to those 
reported in previous publications18,19,30. Ethical approval for the fMRI 
study was obtained from the Oxford Central University Research Ethics 
Committee (Ref: R72921/RE001). This study was not pre-registered. All 
participants gave written informed consent before the experiment. 
Participants were paid £15 per hour plus a performance-dependent 
bonus of £8–12.

Experimental procedure. The training, scan and post-scan task were 
all carried out in a single session lasting 2.5–3 h in total. Before the fMRI 
scan, participants were trained on the task for ~20 min. Participants 
practiced on three full example blocks (on average ~25 trials, dependent 
on performance) with the interleaved spatial attention task included, 
and one additional example block without the spatial attention task 
(scanner version). Comprehension questions were included at the end 
of training to ensure that participants had understood the task struc-
ture. Once this had been verified, participants entered the scanner and 
completed 300 trials of the decision task only (since the spatial task 
could not be performed with the button box inside the scanner), lasting 
50–60 min (scanner session). Participants then completed the spatial 
variant of the task for an additional 100 trials outside of the scanner, 
lasting 20 min (post-scan session). Once the post-scan session was 
complete, participants filled out a short debrief questionnaire. The 
experimental task paradigm was created using PsychoPy (v.2021.1.2).

Primary decision task. Participants were told their aim was to fill as 
many nets with seafood as possible across the study, limited only by 
the number of choice trials in the study. The number of trials remaining 
in which the participants could continue to fill nets was shown in the 
top right corner of the screen throughout the study (Extended Data 
Fig. 1a). Above the indication of trials remaining, the number of points 
earned (nets completed so far) was shown, where each completed net 
was converted to a £0.25 bonus payment at the end of the study.

At the start of each block, participants were shown the size of 
the net to be filled as an empty grey bar at the bottom of the screen 
(Extended Data Fig. 1b). Blocks ended when a net was complete and a 
point was won (Extended Data Fig. 1c). On each trial, participants were 
presented with three offers associated with the three sea creatures 
(always crab, octopus and fish). Offers were shown as horizontal col-
oured bars on the screen next to their respective creature, where the 
size of the bar translated exactly to the quantity which would be added 
to the net if that creature was chosen. Offers were mostly positive (indi-
cated by green bars) but could sometimes become negative (indicated 
by a red bar). If a negative offer was selected, the quantity of the bar 
would be subtracted from the net. Once a net was empty, nothing more 
could be lost so choosing a negative offer would lead to no change.

In the scanner, participants indicated which creature they wanted 
to accumulate using a button box where the first three buttons cor-
responded to the top, middle and bottom creatures on the screen. 
Outside the scanner, participants selected the creature by clicking with 
the mouse. Note that across all versions of the task, the horizontal order 
of the three creatures on the screen was randomized on every trial to 

avoid confounding persistence with motor perseverance. Once the 
creature was selected, the participant viewed the net being updated 
according to their choice.

Spatial variant. After completing the task for 300 trials inside the 
scanner, participants performed 100 trials of a spatial variant of the 
task outside the scanner. The spatial variant included an interleaved 
spatial attention task before every decision (Extended Data Fig. 1e). 
Participants viewed the three creatures flashed up simultaneously for 
500 ms in randomized locations across the screen. Participants were 
then probed in a random order on the location of each creature. When 
the icon of each creature appeared in the top right corner of the screen, 
participants responded by using their mouse to click on the location 
at which they remembered it appearing. While it was not possible for 
participants to perform the spatial attention task inside the scanner 
(due to the impracticality of reporting three spatial locations on every 
trial with a button box), we matched the basic structure of the scanner 
variant to the spatial variant by having participants passively view the 
three creatures flashed on the screen during an ITI of between 2.5 and 
8 s (Extended Data Fig. 1d).

Schedules. Schedule generation procedure. For each block, the size 
of the net and the option offers differed. The net sizes were drawn 
from a uniform distribution (minimum 12, maximum 72). The initial 
values for the three options were drawn independently from a normal 
distribution at the start of each block (mean = 6, σ2 = 1). From trial to 
trial, the offers for each option changed according to independent 
Gaussian random walks (σ2 = 0.8). In addition, on each trial there was 
an independent probability of any option changing more drastically in 
its associated offer (P = 0.1 jump up, P = 0.1 jump down), correspond-
ing to an option becoming substantially more ‘bountiful’ or ‘scarce’ 
for fishing opportunities. The jump function consisted of drawing a 
random value between 3 and 9 points higher or lower than the option’s 
starting offer, which corresponded to the new offer for that item. After 
a jump, the subsequent offers for that option would continue to change 
according to a random Gaussian walk from the new starting location 
(see Fig. 1b for example trajectories created using this procedure). To 
select pairs of net sizes and option offers for which completing the net 
was non-trivial yet feasible, we chose combinations where goals were 
completed in more than 3 trials and less than 15 trials when choice 
behaviour was simulated using the tree-search model.

Schedule variants. To minimize schedule-specific artefacts, we gene-
rated 5 different schedules which each consisted of 45 blocks of 100 
trials. A block ended when the net was filled, so participants on aver-
age viewed only 7 trials per block before completing the net. For each 
MRI participant, separate schedules were randomly selected for 
the within-scanner and post-scanner sessions. In the lesion patient 
study, the same schedule was used across all individuals (includ-
ing age-matched controls) due to the limited sample size for lesion 
patients. Each session ended after a predetermined number of trials 
(300 in the MRI scanner, 100 in the post-scan session and 250 for all 
participants in the patient study), so no participant was able to com-
plete all 45 blocks of a schedule within the available experimental trials.

Behavioural models. We investigated participants’ choice strategy by 
fitting their behaviour to a set of possible models capturing different 
heuristics or strategies. Four models with increasing complexity were 
tested as candidates for describing peoples’ subjective evaluation of the 
offers (see Extended Data Fig. 3a for a graphic depiction of the strategies):

 1. Offer-max model: The agent chooses the largest offer on screen, 
regardless of the accumulated contents in the net. The values 
of the three items according to the model are equivalent to the 
current offers for each item.
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 2. Myopic model: The agent maximizes accumulated value on the 
current trial. This means they will only switch if an alternative 
offer is greater than the combined contents of the net and the 
offer for the current goal item. The value of the goal item is equal 
to the accumulated value plus the goal item offer, while the value 
of the alternatives is simply equivalent to their current offers.

 3. Simple prospective model: The agent calculates how much 
progress towards the goal each offer will entail, where progress 
is the proportion of the remaining unfilled net that will be 
completed after choice. Mathematically, the value of an option 
according to this model is the current offer for each option, 
divided by the quantity of net left to fill (when choosing that 
option). Intuitively, this model values each option on the basis 
of the number of trials needed to fill the whole net, if the option 
values stay constant throughout.

Goal goodvalue = ⌈ Optionoffer
Net size − Accumulated value ⌉

(1)

Alternative goodvalue = ⌈Optionoffer
Net size ⌉ (2)

A central difficulty for a model that estimates value in this way is deal-
ing with negative offers. Negative offers would reverse the respective 
values, meaning that implausibly, negative offers associated with 
the goal good are valued less than negative offers associated with 
alternative goods. To address this problem, we set the value of nega-
tive offers associated with alternatives to their raw (negative) offer, 
and the value of negative offers associated with the goal option to the 
proportion of progress they would be losing, that is, the offer divided 
by the accumulated value.
 4. Stochastic tree-search model: The agent uses information about 

offer trajectories to simulate possible futures for the different 
candidate options, choosing the option that is forecasted to 
complete the net fastest. Specifically, it samples possible future 
trajectories for the three options and calculates each option’s 
value as the (negative) average number of trials until net com-
pletion across the iterations (if it were chosen on this trial).

The same statistics used for creating the experimental offers were 
used when the model simulated the future trajectories of the options 
(procedure described in ‘Schedule generation procedure’). In other 
words, this model possesses task knowledge of how offers are likely 
to change over time and leverages that to compute a better estimate 
of how long each option will take to fill the net.

We verified that behaviour from the different models can be distin-
guished in the task schedules used (full details of the model validation 
process are included in Supplementary Information).

Model fitting. Participant choices were aggregated across the scanner 
session (300 trials) and post-scanner session (100 trials) before model 
fitting. In each case, the model value of switching was calculated as the 
model’s value for the current goal subtracted from the model’s value 
for the best alternative goal. To determine the best-fitting normative 
model, we fit the following models to behaviour:

 1. SVabandon = β0 + β1(alternative valueoffer-max – goal valueoffer-max)
 2. SVabandon = β0 + β1(alternative valuemyopic – goal valuemyopic)
 3. SVabandon = β0 + β1(alternative valueprospective − goal valueprospective)
 4. SVabandon = β0 + β1(alternative valuetree-search – goal valuetree-search)

where β0 is the intercept and β1 is the slope capturing the use of model 
value. SV refers to subjective value. We fit these models in a mixed 
effects logistic regression analysis predicting abandonment choices, 
where the intercept and slope were also modelled as random effects 
across participants.

We used a leave-one-out cross-validation process to evaluate 
between models since the models differed in their conceptual complex-
ity but not in the number of fitted parameters. For each participant, 
we fit each of the mixed-effects models to the choices of all other 
participants (n = 29). For the held-out participant, we then computed 
the predicted abandonment value for each trial and transformed this 
into the predicted probability of switching using the softmax function:

Pabandon =
1

1 + e−SVabandon
(3)

We took the absolute difference between the predicted prob-
ability of switching and each held-out participant’s true responses, 
and subtracted this difference from 1 to compute the model accuracy 
for each participant separately. This allowed us to evaluate both the 
overall cross-validation accuracy of each model and the frequency 
of best-fitting models across participants (Extended Data Fig. 3e–g).

Data were analysed in Python (3.11.5) and MATLAB (v.R2021_a). 
The following Python packages were used for data processing, analysis  
and visualization: pandas (2.1.1), NumPy (1.26.0), seaborn (0.12.2), 
Matplotlib (3.8.0), SciPy (1.11.2), statsmodels (0.14.0), Pingouin (0.5.3), 
rpy2 (3.5.11), Nilearn (0.10.2) and NiBabel (5.1.0).

Persistence bias. Once we established that the tree-search model was 
the best-fitting model of participant behaviour, we used this model to 
further investigate individual differences in persistence deviating from 
the model. We fit the logistic regression model predicting switches 
using tree-search value to each participant separately. A participant’s 
indifference point (IP) is the model value of abandonment at which 
a participant is equally likely to persist or abandon (the ‘shift’ on the 
sigmoid function). Mathematically, this is equal to:

IP = −β0
β1

(4)

where β0 and β1 refer to the intercept and slope, respectively, from the 
logistic regression predicting participant abandonment choices from 
the model value of abandonment. Since persistence biases violated 
tests of normality, we used the one-sample Wilcoxon signed-rank 
test to determine whether the indifference points were significantly 
above zero.

Throughout subsequent analyses, the IP parameter fitted to each 
participant is referred to as their ‘persistence bias’ (that is, the bias 
towards persisting compared to the tree-search model). Persistence 
biases were recoverable in the empirical range and had good test-retest 
reliability across sessions. Extended Data Fig. 4a shows recoverability 
and test-retest reliability, and a full description of the parameter recov-
ery procedure and test-retest analyses are included in Supplementary 
Information.

In addition, we investigated whether persistence biases were 
modulated by goal progress (defined as the proportion of the current 
net completed). Full details of goal progress analyses are included in 
Supplementary Information.

Spatial task analyses. The spatial task results come from a separate 
behavioural testing session after the fMRI session, where participants 
performed the same decision task with the addition of an interleaved 
spatial attention task before making each decision (the ‘spatial variant’ 
described above). We used this task to measure the relative distribu-
tion of attention between stimuli associated with the current goal 
and stimuli associated with alternative goals, across goal pursuit. We 
quantified spatial error as the Euclidian distance between the location 
of the participant’s click and the true location at which the stimulus 
appeared, in normalized screen units. We quantified reaction times 
(RT) as the time (in seconds) between when a stimulus was probed 
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(appearing in the top left corner of the screen) and when the participant 
indicated their response.

We then categorized responses according to whether the probed 
stimulus was the current goal good or one of the alternatives. We 
excluded the first trial of every block from analyses, where no goods 
had yet been accumulated. Since the distribution of mean reaction 
times and mean error did not violate assumptions of normality, we 
used t-tests to determine whether mean error differed as a function of 
the status of the stimulus (that is, whether the stimulus was the current 
goal item or an alternative goal item).

We then investigated whether the spatial error bias developed 
as a function of goal pursuit (Fig. 2f). We fit two linear models for 
each participant, predicting (1) current-goal stimulus error and (2) 
alternative-goal stimuli error using the number of trials participants 
had been pursuing the goal, in each case modelling error using the 
following linear regression:

Error = β0 + β1Trials invested (5)

Since the beta weights did not violate assumptions of normality, we 
used two-sided t-tests to determine whether the β1 coefficients across 
participants differed from zero (showing that error is dependent on 
the number of trials invested) for either the current-goal stimulus or 
the alternative-goal stimuli. We also tested for the difference between 
slopes, using a t-test to determine whether trials invested affected 
error differently for the current-goal versus alternative-goal stimuli.

Finally, we investigated whether goal biases in the spatial task were 
related to persistence biases in the decision task. To capture an indi-
vidual’s goal-oriented attentional bias, we took the difference between 
an individual’s mean error for the current-goal stimulus and their error 
averaged across the two alternative stimuli (Fig. 2e). We tested for a 
relationship between an individual’s goal-oriented attentional bias and 
their persistence. Spearman’s correlation was used because as previ-
ously noted, persistence biases violated assumptions of normality.

fMRI acquisition. The fMRI data were collected at the Oxford Centre 
for Human Brain Activity using a 3T Siemens scanner with a multiband 
accelerated echoplanar imaging sequence with the following param-
eters: voxel resolution 2.4 × 2.4 × 2.4 mm3, repetition time = 1,230 ms, 
echo time = 30 ms, flip angle = 60°, field of view = 240 mm, multiband 
acceleration factor = 3, PAT factor = 2, encoding direction = PA. A tilt 
angle of 30° was used to minimize signal dropout in the orbitofrontal 
cortex57. Data were collected in two consecutive runs of ~25 min, where 
participants stayed in the scanner between runs.

Pre-processing and analysis structure. Data were preprocessed 
using FMRIB’s Software Library (FSL), using the FEAT software tool58. 
Functional data were motion corrected using rigid body registration to 
the central volume59,60. Gaussian spatial smoothing was applied with a 
full-width half-maximum of 5 mm, and high-pass temporal filtering was 
applied with a cut-off of 60 s. Cardiac and respiratory data were pro-
cessed using FSL’s Physiological Noise Modelling (PNM) tool to model 
the effects of physiological noise in the MRI data61. Since participants 
completed the MRI session in two runs, parameter estimates were first 
estimated at the level of run (first level), then combined within individu-
als as fixed effects (second level), and finally combined across subjects 
using FMRIB’s Local Analysis of Mixed Effects (FLAME1 + 2; third level62). 
Multiple comparisons were corrected for using a Z-statistic threshold 
of 3.1 and a cluster probability threshold of P = 0.05.

Univariate fMRI analyses. Decision-time analysis. A GLM was used to 
model BOLD activity in pre-whitened data space. Seven regressors of 
interest were included in the main GLM, predicting BOLD activity at 
the onset of the decision period (all modelled as stick functions). These 
regressors included whether the choice on this trial was to persist or 

abandon (coded as 1/−1), the tree-search value of the current goal, the 
tree-search value of the two alternatives, goal progress, goal size and 
response time. Since goal progress is correlated with tree-search value 
but our behavioural analyses show that it is an additional predictor 
of abandonment beyond tree-search value (illustrated in Fig. 2c), we 
disentangled the goal progress component from the tree-search value 
in the MRI analysis. To do this, we residualized all forms of value to goal 
progress and used goal progress as an independent regressor, allowing 
us to identify where goal progress is separately tracked in the brain. In 
addition, since the tree-search value of an option is an approximation 
of its ‘time to completion’, it is highly dependent on the size of the 
net across different blocks. To account for this, we also residualized 
the tree-search value to net size and included net size as a separate 
regressor. In other words, for each value component (current goal, best 
alternative, worst alternative), we removed the components related to 
goal progress and goal size, and added these components as unique 
regressors to examine separately. All regressors were z-scored at the 
level of individual runs before fitting the GLM. Extended Data Fig. 6a 
displays the final correlations between the regressors.

In addition to the parametric regressors, five types of events 
were included in the final GLM as main effects: onset of the decision 
period, onset of the block, spatial presentation of the three stimuli 
(substituting the spatial task), the update of the net and the end of the 
block. The following confound regressors were also included in the 
design matrix: six motion regressors produced during realignment, the 
physiological explanatory variables (processed by PNM) and a matrix of 
motion outlier timepoints. Motion outliers were detected using FEAT’s 
fsl_motion_outliers tool. Metric values for detecting motion outliers 
were calculated for each timepoint using the root mean square intensity 
difference between each volume and the reference volume, and outliers 
were identified as volumes for which the metric value exceeded the 75th 
percentile + 1.5 times the interquartile range. Note that no participants 
or timepoints were removed from analyses due to motion, but rather, 
the effect of these outlier timepoints on the analysis was controlled 
for by including a confound matrix of outlier timepoints in the GLM. 
Across runs, the median percentage of timepoints identified as outliers 
was 2.4% of volumes (maximum across all runs 9.1%).

Whole-brain intertrial analysis. Given that behavioural biases accom-
panying goal pursuit lasted even outside of the decision period (in 
our spatial task), we asked whether goal-related neural activity also 
persisted between decisions. Of the regressors listed under ‘Univari-
ate fMRI analyses’, goal progress is the one dynamic variable that can 
be tracked between trials (rather than depending on information 
presented at the decision; that is, the offers which feed into the option 
values). We therefore specifically investigated whether information 
about goal progress was carried between trials.

To do this, we ran a whole-brain analysis where we included all the 
same regressors listed in ‘Decision-time analysis’, both time-locked 
to the decision onset and time-locked to the presentation of the first 
fixation (ITI 1; see Extended Data Fig. 1d for ITI timing during task and 
Extended Data Fig. 6d for the regressor correlation matrix). We asked 
whether the activity tracking goal progress was present during the ITI 
(see Fig. 3b for results of this analysis and Extended Data Table 1 for the 
table of fMRI peak activity).

ROI analyses. ROI selection. The vmPFC, ventral striatum and dorsal 
ACC (dACC) were selected as regions-of-interest for further analysis 
because they showed strong value-related activity at decision time in 
our whole-brain analysis. This is consistent with previous literature 
showing that the dACC is involved in value-guided abandonment27,29,31, 
and the ventral striatum is a centre of value-guided choice63, known 
to be sensitive to goal proximity45 and with meaningful projections 
to vmPFC64. Given the relevance of these areas for decision making 
during goal pursuit, we created regions of interest at the peaks of 
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activity in these areas from our whole-brain analysis. Full details of the 
extraction procedure for the ROIs used in this paper can be found in 
Supplementary Information.

Baseline activity analysis. As in previous paradigms23, we defined  
baseline activity as the activity present at the onset of the choice  
offers, before the new offers or the decision itself influenced the dynamics  
(that is, t = 0 of the time course shown in Extended Data Fig. 7d–f). Full 
details of the baseline activity analysis are included in Supplementary 
Information.

Value modulation analyses. To determine how neural representations 
of value are modulated by goal pursuit, we investigated the interaction 
between goal progress and value. Following the behavioural analyses, 
this involved predicting neural activity using the interaction between 
goal progress and each source of value (tree-search model value of best 
alternative and tree-search model value of current goal). Full details 
of the analysis procedure within ROIs are included in Supplementary 
Information.

Lesion patient study
Participants and experimental procedure. Twenty-six patients with 
brain lesions (13 female; mean age 58 years) and 27 age-matched control 
participants (17 female; mean age 59 years) took part in the study. Of 
the lesion patients, one was excluded because they failed to pass the 
initial comprehension questions and two were excluded because they 
were unable to complete the task. Of the remaining 23 individuals in the 
study, 16 had damage within the frontal cortex and the remaining 7 had 
damage to other areas (see Fig. 5a for maps of lesion overlap). No statisti-
cal methods were used to pre-determine sample sizes, but our sample 
sizes are larger than those reported in previous publications41,43,44. The 
patient population was recruited from a database of individuals who 
had previously visited the John Radcliffe Hospital and consented to be 
contacted for research studies. Ethical approval for the patient study 
was obtained from the London Fullham Research Ethics Committee 
(IRAS project number: 242551, REC Reference number: 18/LO/2152). This 
study was not pre-registered. All participants gave written informed 
consent before the experiment. Participants were paid £15 per hour plus 
a performance-dependent bonus of £8–12. Data collection took place 
online over a single session where the participant completed an online 
version of the task (hosted on Pavlovia), while the researcher remained 
on the telephone throughout the session. Before beginning the task, the 
participant received 12 trials of training and was required to pass three 
comprehension questions before proceeding to the main task, which 
consisted of 250 trials in total. The same schedule was used across all 
participants. The age-matched controls completed the same schedule 
and training procedure online, and were recruited through Prolific.co.

Voxelwise lesion analysis. We began by investigating the relationship 
between brain damage and persistence biases independently from 
the fMRI study. To investigate areas causally relevant for persistence 
in the task, we performed a voxelwise whole-brain analysis predicting 
behaviour from maps of the patients’ neural damage (Fig. 5b). For 
each voxel, we predicted individual persistence biases using a binary 
regressor capturing whether the voxel was damaged in that individual:

Persistence bias ∼ Voxel damage (6)

We used a threshold of t > 2.3, where damage predicted lower 
persistence biases (P < 0.01, one-sided test because our hypotheses 
concerned areas where damage leads to a ‘reduction’ in persistence 
biases).

Permutation-based cluster correction. We controlled for multiple com-
parisons by performing cluster correction using the false discovery rate 

(FDR) method65. Using a permutation-based approach, we determined 
the maximum cluster size expected from our lesion dataset due to 
chance, using the same significance threshold. On each permutation 
(total of 1,000 iterations), we shuffled individual persistence biases and 
performed the same voxelwise regression analysis with the shuffled 
biases. We created a distribution of clusters found across all permu-
tations and defined the minimum cluster size for significance at the  
95% cut-off of all clusters found by chance, resulting in a minimum 
cluster size of 255 voxels.

ROI-based lesion analysis. Next, we performed a groupwise compari-
son where we split lesion patients on the basis of whether they were 
damaged in a region pre-defined by our fMRI study. Our fMRI study 
had identified a subset of areas carrying signals relating to goal pursuit 
even between decisions, focused on the vmPFC. We split all patients 
into two groups on the basis of whether they were damaged at an ROI 
centred on the peak of this interdecision fMRI activity. Following the 
same procedure described in ROI selection and extraction procedure, 
we extracted a region of interest with a 3-voxel radius (7.2 mm3) centred 
on the peak of activity tracking goal progress during the ITI in our fMRI 
study. We then tested for a difference in persistence biases between the 
two groups of patients and against the age-matched controls. We used 
a one-sided permutation test to test for a difference in means between 
groups due to the small sample sizes and non-normally distributed 
biases (Fig. 5c; we used a one-sided test based on our hypothesis that 
damage to the vmPFC would reduce persistence, although we note  
that the difference remains significant if we were to perform a two- 
sided test).

Patient control analyses. Our voxelwise regression analysis identified 
a region of the vmPFC that included damaged voxels from five different  
patients. Our ROI-based lesion analysis independently identified 
four out of the five same patients when selecting on the basis of a 
pre-defined fMRI region. For the subsequent control analyses, we 
verified that the initial five patients were truly less biased to persist, 
rather than persisting less for other reasons (such as using a drastically 
different strategy or responding more randomly). We note that if these 
control analyses were limited to the four patients identified in the 
ROI-based analysis (excluding the additional vmPFC patient identified 
in the voxelwise analysis), the same conclusions hold.

First, we compared performance across groups. If vmPFC patients 
are truly less ‘biased’ to persist than other patients, rather than just 
being more random in their switch behaviour, we should expect to 
see a performance enhancement. We quantified performance as the 
mean number of trials taken to complete a goal, where a lower value 
means goals were completed faster. Since all participants in the patient 
task completed the identical schedule, this measure is not vulner-
able to schedule-specific artefacts. We then tested whether vmPFC 
patients performed better than patients with damage elsewhere, using 
a one-sided parametric test (Fig. 5d; we used a one-sided test based on 
our hypothesis that reduced bias should improve performance, but 
also note that the difference remains significant if we were to perform 
a two-sided test).

Second, we confirmed that behaviour among patients with dam-
age to this region was still best explained by the same behavioural 
model as healthy individuals (the ‘tree-search model’) and not by a 
simpler strategy, by fitting the four behavioural models described in 
‘Model fitting’ (Extended Data Fig. 9a).

Finally, we verified that the vmPFC patients were not more sto-
chastic in their decision process. We quantified stochasticity as inverse 
temperature, which is the beta weight associated with the tree-search 
value in our logistic regression predicting abandonment choices. We 
used two-tailed permutation tests to verify that there was no difference  
in stochasticity between the vmPFC lesion group and other patients, 
and between the vmPFC lesion group and age-matched controls 
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(Extended Data Fig. 9b). Further information about performance 
in the spatial task among patients can be found in Supplementary 
Information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All behavioral data and the preprocessed fMRI data have been depos-
ited at OSF (https://osf.io/mvquk/) and are publicly available as of the 
publication date. The patient lesion maps are not publicly available 
as this would compromise the privacy of the research participants.

Code availability
All analysis code is available on OSF at https://osf.io/mvquk/ (Identifier: 
DOI 10.17605/OSF.IO/MVQUK).
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Extended Data Fig. 1 | Task Design. (a) Illustration of task as presented to 
participants using the framing story of an ‘underwater’ fishing game. In addition 
to the features described in Fig. 1a, the number of nets completed (that is points) 
was shown in the top right corner next to the money bag icon. Total nets were 
directly translated to the participant’s bonus payment at the end of the study. 
The number of trials remaining in the session was shown directly underneath, as a 
proportion of the total trials in the session. This was to incentivise participants to 
make as strategic choices as possible to maximise the number of nets they could 
fill within the remaining trials. (b) At the start of each new block, participants 
were presented with the size of the net they needed to fill. (c) A block ended when 
the participant had filled the net, and a point was won. (d) Task sequence inside 
the scanner. To keep the task visually consistent with the spatial session outside 

the scanner, participants passively viewed the three sea creatures flash on screen 
during the inter-trial interval, but were not required to report the location of 
the creatures. To dissociate activity related to the decision from activity related 
to response indication, we included a two second buffer zone once the offers 
were presented, before participants could make their response. In the main fMRI 
analyses, activity was time-locked to the onset of the decision period, shown here 
as ‘view offers’. In the additional ITI analysis, activity was time-locked to ‘ITI 1’. (e) 
Task sequence in the spatial session (outside the scanner). Participants initiated 
the presentation of the creatures. After viewing the presentation of the creatures 
for 500 ms, they were then probed on the location of the three creatures in a 
randomised order before being presented with the main decision task.
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Extended Data Fig. 2 | Task behaviour. (a) Proportion of abandonment 
choices as a function of trial number (mean values +/− SD, n = 30). (b) Results of 
a logistic regression analysis predicting goal switching as a function of simple 
task parameters (mean beta weights associated with the regressors are plotted, 
+/− SEM, n = 30, dots show individual participant beta weights). The plot 
demonstrates participants were sensitive to the key elements of the task: they 
were more likely to switch when the offers associated with alternative goods 
were high (two-sided t-test against zero; t(29) = 14.74, p = 5.29 × 10−15), and less 
likely to switch when the offers for their current good were high (two-sided t-test; 
t(29) = −16.84, p = 1.63 × 10−16), or after having accumulated many goods in their 
net (two-sided t-test; t(29) = −27.67, p = 2.12 × 10−22). We also found that people 
were more likely to abandon a goal when the size of the target net was larger (two-
sided t-test; t(29) = 5.35, p = 9.51 × 10−6). We found no effect of the second-best 

alternative on abandonment decisions (t(29) = 0.11, p = 0.912). (c) Reaction times 
plotted against goal progress (mean values +/−SEM, n = 30). (d) Relationship 
between reaction times and trial type (mean values +/− SEM, n = 30, dots 
show individual participant means). Participants are much slower to respond 
on abandonment trials compared to persist trials (mean RT on persist trial = 
1.52 seconds, SD = 0.28; mean RT on abandonment trial = 2.59 seconds, SD = 0.62; 
two-sided paired t-test for difference in RTs: t(29) = 11.05, p = 6.42 × 10−12). 
Participants were also faster on persist trials than the first trial of a block (mean 
RT on the first trial = 2.17 seconds, SD = 0.65; two-sided paired t-test for difference 
between first trial and persist trial: t(29) = 6.05, p = 1.38 × 10−6), but slower on 
abandonment trials than the first trial (two-sided paired t-test for difference 
between first trial and abandon trial t(29) = 2.99, p = 0.006).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Behavioural models. (a) Graphic of the four behavioural 
models as described in ‘Behavioural Models’ in methods. (b) Graphic of the 
‘goal progress’ regressor, defined as the proportion of the goal completed (net 
contents / net size). Note that goal progress differs from overall progress in the 
study, since multiple goals (nets) are completed successively over the course 
of the study. (c) Confusion matrix resulting from model recovery procedure. 
Each column corresponds to a model used to simulate the dataset. Each row 
corresponds to the model used to recover the dataset. Within a column, shading 
corresponds to the BIC of each competing model relative to the winning model. 
Lower BICs corresponding to better fits are displayed in darker shades. Numbers 
indicate the rank of the model in the model comparison per column (where 1 
is the winning model, and 8 is the worst fitting model). In all cases, simulated 
behaviour is best fit by the true generative model. (d) Behavioural information 
criteria (BICs) for the models fitted to participant behaviour. Each model fitted 
corresponds to a model recovered in (c). Dark orange depicts logistic regression 

models using model value alone. Light orange depicts logistic regression 
models with goal progress added as an additional regressor. (e) Cross-validation 
accuracy of each model predicting only abandonment trials. A leave-one-out 
procedure was used. For each participant, we fit each of the mixed-effects 
model to the choices of all other participants (n = 29). Predictive accuracy 
was computed from the fixed effects on the left-out participant. Mean cross-
validated performance across participants is plotted, with error bars depicting 
SEM. (f ) Cross-validation accuracy of each model predicting only persistence 
trials. Mean cross-validated performance across participants is plotted, with 
error bars depicting SEM. As for (e), the tree-search model describes behaviour 
best. (g) Best-fitting model frequencies across the fMRI healthy population. For 
each participant, the best fitting model was assessed using the cross-validated 
accuracies. The tree-search model was the best fit to choices for 27 out of 30 
participants.
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Extended Data Fig. 4 | Parameter recoveries and test-retest reliability.  
(a, b, c) Parameter recoveries. Empirical parameters from decision data 
aggregated across both sessions were used to simulate behaviour (100 iterations 
per participant yielding n = 300 simulations total). Parameters were recovered 
for each simulation by fitting a logistic regression using the same procedure used 
for the empirical data. Mean recovered parameter +/− SD are plotted, with dots 
showing recovered parameters for individual iterations. Red dotted line indicates 
the identity line (perfect recovery). Two-sided Pearson’s correlations were 
performed. (a) An individual’s persistence bias was defined as their ‘indifference 
point’ to abandonment when predicting abandonment choices using the 
tree-search value of abandonment. This is equal to the negative product of 
temperature and intercept from the logistic regression (-intercept*temperature; 
see ‘Persistence bias’ section in Methods). Recovered persistence biases 
correlated with the simulated biases with a Pearson’s correlation of 0.96 
(p = 6.74 × 10−170). (b) Recovery of the intercept parameter: Recovered against 

simulated parameters from the logistic regression. The simulated intercepts can 
be recovered with a Pearson’s correlation of 0.92 (p = 3.44 × 10−122).  
(c) Recovery of the inverse temperature parameter: Recovered against simulated 
inverse temperature. The simulated inverse temperature can be recovered with 
a Pearson’s correlation of 0.84 (p = 2.46 × 10−82). (d, e, f ) Test-retest reliability of 
parameters across the two sessions. Parameters were separately fitted to the 
decision task inside the scanner (‘session 1’, see Extended Data Fig. 1d) and to the 
decision task outside the scanner (‘session 2’, Extended Data Fig. 1e). Two-sided 
Pearson’s correlations are reported. All parameters show significant test-retest 
reliability. (d) Test-retest reliability for persistence biases across the two sessions 
(Two-sided Pearson’s r = 0.69, p = 2.48 × 10−5). Persistence biases are derived from 
the intercept and inverse temperature shown in e and f. (e) Test-retest reliability 
for the intercept alone across the two sessions (Pearson’s r = 0.46, p = 0.010)  
(f ) Test-retest reliability of inverse temperature across the two sessions 
(Pearson’s r = 0.38, p = 0.040).
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Extended Data Fig. 5 | Simulated behaviour from tree-search model. 
Behavioural analyses on simulated data from the normative tree-search model, 
demonstrating the empirical behavioural patterns are not an artefact of the 
testing schedules. Here, we fit the normative tree-search model to 30 simulated 
data-sets in which each simulation corresponded to one of the 30 participant 
schedules. (a) Individual fits to simulated data sets show persistence biases of 
zero, demonstrating that the empirically found biases are not an inherent feature 
of the schedules used. Compare to Fig. 2b showing the range of participant 

specific persistence biases. (b) Quartile fits demonstrating that we accurately 
recover no difference in persistence biases across quartiles when simulating 
with the normative model. Compare to Fig. 2c showing that participants are 
more biased to persist as goal progress increases. (c) Effects of temptation and 
frustration on abandonment choices. In the normative model simulations, we 
accurately recover no difference in how these two abandonment causes are 
weighted. Compare to participant behaviour in Fig. 2d showing diverging slopes 
corresponding to the impact of frustration vs temptation across goal progress.
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Extended Data Fig. 6 | Whole-brain fMRI analyses. (a) Correlation matrix 
(convolved with the hemodynamic response function) of the regressors included 
in the initial whole-brain analysis, alongside event regressors. The regressors 
were time-locked to the onset of the choice (that is ‘view offers’ in Fig. 1d). 
Value refers to value from the tree-search model, the normative model which 
described behaviour best. Value was orthogonalised to goal progress to separate 
these components each shown to affect behaviour (see Methods). (b) Activity 
related to abandonment (red) vs persistence (blue) decisions. In other words, 
the positive and negative activity related to the ‘abandonment trial’ regressor 
in (a), where trials were coded as 1 for abandonment and −1 for persistence (c) 
Activity related to the value contrasts. Blue depicts areas where activity increases 
when the tree-search model value of persisting with the goal is greater than the 
tree-search value of switching to the best alternative. Orange shows the inverse 

(where activity increases when the tree-search model value of switching to the 
best alternative is greater than the tree-search model value of persisting with the 
current goal). The peaks of these value contrasts were used to define the regions 
of interest in vmPFC, ventral striatum, and ACC, as shown in Extended Data 
Fig. 7a–c. (d) Correlation matrix (convolved with the hemodynamic response 
function) of the regressors included in the second ITI whole-brain analysis. This 
analysis included all the same regressors as the main whole-brain analysis, this 
time modelling BOLD activity both at the choice onset, and in addition at the 
first inter-trial fixation cross (that is ‘ITI 1’ in Fig. 1d). (e) Relationship between log 
reaction times and whole-brain activity, at the time of decision. The areas where 
longer RTs predict more activity include ACC, insula, and dlPFC. The areas where 
shorter RTs predict stronger activity include ventral striatum and frontal pole 
(area 9). We do not see activity related to RTs in vmPFC.
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Extended Data Fig. 7 | Regions of interest and neural activity time courses.  
(a, b, c) We extracted regions of interest based on the peaks of value-related 
activity in our fMRI study (see ‘ROI selection and extraction procedure’ in 
Methods). These consisted of the peaks of activity for the contrast of goal value–
alternative value in the case of vmPFC [−2,48,−8] and ventral striatum [8,8,−10], 
and the largest sub-peak of activity in the dACC for the alternative value–goal 
value regressors [8,28,30]. All peaks are shown in Extended Data Table 1 (ROI 
peaks starred). (d, e, f ) Time course analyses depicting the t-statistics for 
the regressors of goal progress (purple), current goal value (blue), and best 
alternative value (orange) in the three regions of interest (for illustration). Time 
0 seconds corresponds to the onset of the choice (that is ‘view offers’ in Extended 
Data Fig. 1d). The GLM used in the time-course analysis contained identical 
regressors to the whole-brain GLM described in Univariate fMRI analyses in 

Methods, and shown in the correlation matrix in Extended Data Fig. 6a. Mean 
beta weights are plotted, where shaded error show SEM across participants 
(n = 30). Note the pre-decision modulation of activity by goal progress (t = 0) in 
the vmPFC predicted individual differences in attention and decision (Fig. 3d, e). 
(g, h, i) Additional analysis controlling for possible confounds of goal  
progress within the same GLM. Mean beta weights are plotted, where shaded 
interval shows SEM (n = 30). (g) Even when controlling for both within-block  
and across-study trial number, vmPFC baseline activity tracks goal progress.  
(h) VmPFC activity does not track within-block trial number at baseline.  
(i) VmPFC activity does not track trial number across the study. ( j, k) Goal 
progress (that is proportion of the goal completed) is correlated with trial 
number within a block (j; where a block corresponds to a single goal), but is not 
correlated with total trial number across the study (k).
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Extended Data Fig. 8 | Control analyses for the relationship between 
baseline vmPFC activity and persistence bias. Statistics shown in each plot 
report two-sided Spearman’s correlations (effect and significance) between 
the neural regressor, and the persistence bias fitted to data aggregated across 
both sessions. In all plots, green dots show individual participant biases 
plotted against the relevant neural regressor beta weight. (a) Main effect 
from manuscript, showing baseline vmPFC tracking of goal progress predicts 
individual differences in persistence bias (where baseline representation of goal 
progress is defined as the beta weight for the relationship between vmPFC BOLD 
activity and goal progress at decision onset). Our decision to examine baseline 
vmPFC activity was based on hypotheses from previous literature showing 
baseline vmPFC activity carries subjective biases in decision-making, but here we 
present various controls. (b) Control analysis showing spatial specificity of the 
effect in (a) to vmPFC: Baseline representation of goal progress in the ACC and 
striatal regions of interest does not predict individual differences in persistence 
biases. (c) Decision-related representations of goal progress in vmPFC does not 

predict individual difference in persistence bias. Here, we capture decision-
related representation of goal progress by multiplying the fitted beta coefficients 
for goal progress at each time-point from choice onset by the double gamma HRF 
function, and summing the products to produce a decision related component 
for each participant (same procedure described in Value modulation analyses). 
(d) In the main manuscript, baseline vmPFC was defined as unconvolved activity 
at the moment (t = 0) of choice-onset (as in Vinckier et al. 2018.) Here we show 
the relationship between baseline vmPFC and behaviour is unaffected if baseline 
activity is defined as the unconvolved activity two seconds prior to choice-onset 
(as in Lopez-Persem et al. 2016). In other words, to address concerns that activity 
could be related to the onset of the choices, here we show that activity at a time-
point two seconds earlier is predictive of behavioural biases, consistent with 
the interpretation that pre-decision activity is the critical predictor. In contrast, 
(c) shows that decision-related activity (post choice onset), is not predictive of 
individual differences.
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Extended Data Fig. 9 | Lesion patient additional analyses. (a) Results from a 
post-hoc control analysis where we fit the four normative models to behaviour in 
the three groups (left: patients with damage within the vmPFC cluster identified 
from the voxel-wise analysis; middle: patients with damage external to the vmPFC 
cluster; right: age-matched healthy control participants). In each group, we fit the 
models using a mixed effects regression model predicting abandonment choices 
(same method as for fMRI participants, described in Methods). Our results 
show the tree-search model remains the best fit to behaviour in all three groups. 
(b) Post-hoc analysis comparing inverse temperature across the three groups 
described in (a). Patients with damage within the vmPFC cluster identified in the 
voxel-wise analysis are not simply more stochastic since they show no difference 
in inverse temperature to the age-matched controls (Inverse temperature in 
vmPFC patients: n = 5, mean = 0.57, std = 0.04; inverse temperature in other 
patients: n = 18, mean = 0.51, std = 0.22; inverse temperature in age-matched 
controls: n = 27, mean = 0.61, std = 0.19; difference between vmPFC group and 
other patients: two-sided permutation test, difference in means = 0.06, p = 0.572, 

n.s.; difference between vmPFC patients and age-matched controls: two-sided 
permutation test, difference in means = 0.04, p = 0.633, n.s.). Note the inverse 
temperature parameter has high parameter recoverability (Extended Data  
Fig. 4c). (c) Voxel-wise map of t-statistics where lesion damage predicts reduced 
persistence biases (same as shown in Fig. 5b thresholded at a higher significance 
level for illustration, t > 2.6). (d) Region of interest from fMRI study, taken at 
the peak of activity tracking goal progress between decisions, at [4,58,−6] (see 
Extended Data Table 1). Patients are split into those with damage inside this ROI 
and those with damage external to this ROI in Fig. 5c. (e) Response errors in the 
spatial task for each group, where error is mean Euclidian distance between 
participant response and true item locations, in normalised screen units. Mean 
error +/− SEM is plotted (n = 23 patients), where orange shows error for the 
current goal stimulus, and blue shows error for the alternative goal stimuli. While 
the spatial bias effect is in the right direction, the patient group do not show a 
significant accuracy advantage for the current goal item relative to alternative 
goal items.
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Extended Data Table 1 | Peaks of activity from cluster-corrected whole-brain fMRI analyses

Multiple comparisons were corrected for using a Z statistic threshold of 3.1, and a cluster probability threshold of p = 0.05. See Extended Data Fig. 6 for all regressors included in GLM. Asterisks 
designate peaks of activity used to extract regions of interests.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The experimental task used for data collection was custom developed by the authors using PsychoPy Standalone (Version v2021.1.2). 

Data analysis fMRI analyses were carried out using FSL, the FMRIB Software Library (FSL version 6.0.4). Behavioural and further neural analyses were carried 
out by custom-written scripts in python (3.11.5) and MATLAB (version R2021_a). Code for data analysis can be found in OSF at https://osf.io/
mvquk/ (DOI Identifier: DOI 10.17605/OSF.IO/MVQUK.). The following python packages were used for data processing, analysis and 
visualization: pandas (2.1.1), numpy (1.26.0), seaborn (0.12.2), matplotlib (3.8.0), scipy (1.11.2), statsmodels (0.14.0), pingouin (0.5.3), rpy2 
(3.5.11), nilearn (0.10.2), nibabel(5.1.0).  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The behavioral data and preprocessed fMRI data has been deposited at OSF (https://osf.io/mvquk/) and is publicly available as of the publication date (DOI 
Identifier: DOI 10.17605/OSF.IO/MVQUK). The patient lesion maps are not publicly available as this would compromise the privacy of the research participants. 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We asked for participants' self-reported gender at the time of data collection: Out of a total of 30 fMRI participants, 19 self-
reported as female. We do not include further analysis of gender, as it was not applicable to our research questions. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We did not collect data on race or ethnicity, as it was not applicable to our research questions. 

Population characteristics fMRI participants were majority University students (mean age of 25 years). Lesion patient participants were patients who 
had previously visited John Radcliffe Hospital Oxford and consented to being contacted (mean age of 58 years). Age-matched 
control participants were collected from an online recruitment platform, and lived in the UK (mean age of 59 years). All 
participants had normal or corrected-to-normal vision. 

Recruitment fMRI participants were recruited via email circulation on Oxford University mailing lists and Oxford-based social media 
platforms. Lesion patients were recruited by email after previously consenting to being contacted for research studies. Age-
matched control participants were recruited online via the platform Prolific. There was no self-selection bias.

Ethics oversight Ethical approval for the fMRI study was obtained by the Oxford Central University Research Ethics Committee (REC; Ref: 
R72921/RE001). 
Ethical approval for the patient study was obtained by the London Fullham Research Ethics Committee (IRAS project number: 
242551 REC Reference number: 18/LO/2152).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data are quantitative experimental data. The fMRI study involves imaging data from a 50 minute fMRI scan, and behavioural data 
during the fMRI scan and in a 30 minute post-scan session. The lesion patient study includes online behavioural data from 23 lesion 
patients and 27 age-matched healthy controls using the same task paradigm as in the fMRI study. 

Research sample The research sample includes 30 healthy individuals (majority Oxford-based students) for the fMRI study, with mean age=25. This 
sample is representative of a healthy young population in the UK. For the lesion patient study, the sample included 23 brain-lesioned 
patients (mean age=58) and 27 age-matched control subjects (mean age=59). These samples are representative of a population of 
brain-lesioned patients and a population of healthy older individuals in the UK. Importantly, we do not compare behaviour between 
the younger fMRI group and the older lesion patient group since these samples are not matched. Instead we only compare lesion 
patient behaviour to the age-matched control population. 

Sampling strategy fMRI sample size (n=30) was chosen as the upper end of the recommended sample size for decision-making imaging studies, based in 
similar studies of naturalistic decision-making in fMRI paradigms (Juechems et al. 2019, Trudel et al. 2021, Park et al. 2021). 
Convenience sampling was used. 
Lesion sample size (n=23) was limited due to patient availability, but is larger than those reported in similar lesion patient studies 
(Hare et al. 2011, Wolf et al. 2014, Noonan et al. 2017). This sample size is sufficient for recovering the effects we report, based on 
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both previous analysis of healthy individuals, and the permutation based size-correction reported in the manuscript. Convenience 
sampling was used.

Data collection fMRI study: training and post-scan tasks were undertaken on a laptop in a behavioural testing room, with one experimenter present. 
fMRI data were acquired at the Oxford Centre for Human Brain Activity using a 3T Siemens scanner. A trained radiographer was 
present in addition to the experimenter during the fMRI scanning.  
Lesion patient study: both the lesion sample and the control sample performed the task virtually on a computer at their own home. 
For the lesion patients, the experimenter was remotely present during the study on the telephone.  
In both cases, the researcher was not blind to the study hypothesis during data collection, but all training was standardised using 
computer-based task instructions and computer-based practice questions which were kept consistent across individual sessions.  

Timing Data collection for the fMRI study took place from May 2021 to January 2022 (with data collection limited by shortages in scanner 
availability at the end of the pandemic).  
Data collection for the patient study was limited by lesion patient availability, with the first patient tested in May 2021 and the last 
patient tested in August 2022. 

Data exclusions One  fMRI participant was excluded because they withdraw their participation in the study (before taking part in the scan itself).  
Two patients were excluded because they were unable to complete the task, and one patient was included because they were 
unable to pass the initial comprehension questions. 

Non-participation One participant dropped out of the fMRI study due to symptoms of claustrophobia in the scanner. Three lesion patients dropped out 
of the lesion patient study; one dropped out due to failing the initial comprehension test, and two dropped out early in the study due 
to fatigue.

Randomization The experimental design of the fMRI study does not involve allocation of participants into different groups. Within the lesion study, 
data was analysed using two separate approaches. First, data from lesion patients was aggregated together (not allocated into 
separate groups) and analysed using voxel-wise regression alongside cluster correction methods (false discovery rate) to control for 
false positives. In the second analysis, lesion patients were allocated into two groups based on whether they were damaged within a 
region-of-interest pre-defined by the fMRI study. Potential group confounds such as task comprehension and age were controlled for 
during analyses. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Event-related design

Design specifications The design consisted of 300 decision trials per subject split into 2 runs, with a 5 minute break between runs, and each 
run taking 25 minutes. Between trials, there was a jittered inter-trial interval of between 2.5 and 8 seconds. At the 
onset of the option offers, participants were required to wait 2 seconds before they could indicate their response by 
button press, to maximally dissociate decision and motor response events. 

Behavioral performance measures Button press choices (between three offers) were recorded, alongside response times. Performance was quantified as 
the number of points won during the session, and all participants performed well above chance.
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Acquisition
Imaging type(s) Functional and structural

Field strength 3T

Sequence & imaging parameters Siemens scanner with a multiband accelerated echoplanar imaging sequence with the following parameters: voxel 
resolution 2.4 x 2.4 x 2.4 mm3, repetition time=1230 ms, echo time=30ms, flip angle=60 degrees, field of view=240mm, 
multiband acceleration factor=3, PAT factor=2, encoding direction=PA. A tilt angle of 30 degrees was used to minimize 
signal drop out in the orbitofrontal cortex (Deichmann et al., 2003). 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Data were pre-processed using FMRIB’s Software Library ( FSL version 6.0.4), using the FEAT software tool (Woolrich et al. 
2001). Gaussian spatial smoothing was applied with a full-width half-maximum of 5mm, and high pass temporal filtering was 
applied with a cut-off of 60s. 

Normalization Registration to standard space was performed using FLIRT (FMRIB's Linear Image Registration Tool) inside the FEAT software. 
Subject's T1-weighted structural image was used first to register the fMRI low resolution image. This was subsequently 
transformed to a standard T1-weighted image in MNI152 space. 

Normalization template Data were normalized to MNI152 space. 

Noise and artifact removal Functional data were motion corrected using rigid body registration to the central volume (Jenkinson et al., 2001, 2002). 
Cardiac and respiratory data were processed using FSL’s Physiological Noise Modelling (PNM) tool to model the effects of 
physiological noise in the MRI data (Brooks et al. 2008). 

Volume censoring We detected and removed motion outliers using FEAT's fsl_motion_outliers tool. 

Statistical modeling & inference

Model type and settings Univariate analysis methods were used. A general linear model (GLM) was used to model BOLD activity in pre-whitened data 
space using parametric event-related regressors. Seven regressors of interest were included in the main GLM, predicting 
BOLD activity at the onset of the decision period. These regressors included participant choices, and model value for the 
different options. 

Effect(s) tested Standard higher-order statistical tests were performed on the group data estimates. GLM parameter estimates were first 
estimated at the level of run (first level), then combined within individuals as Fixed Effects (second level), and finally 
combined across subjects using FMRIB’s Local Analysis of Mixed Effects (FLAME1+2; third level; Woolrich et al. 2004). 

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Regions of interest in vmPFC, ACC, and striatum were selected on the basis of activity peaks from 
orthogonal regressors identified from the whole-brain analysis.

Statistic type for inference

(See Eklund et al. 2016)

Cluster-wise analyses were performed using a cluster probability threshold of p=0.05.

Correction Multiple comparisons were corrected for using a Z statistic threshold of 3.1. 

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity We used standard general linear models (GLM) to investigate how neural activity varied parametrically with 
model regressors, performing statistics primarily on the group data estimates. We probed these effects 
further on an individual level by extracting region-of-interest activity and investigating the relationship 
between traits and fMRI activity  on the individual level (Spearman's correlation). 
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