Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A network of topographic numerosity maps in human association cortex

Abstract

Sensory and motor cortices each contain multiple topographic maps with the structure of sensory organs (such as the retina or cochlea) mapped onto the cortical surface. These sensory maps are hierarchically organized. For example, visual field maps contain neurons that represent increasingly large parts of visual space with increasingly complex responses1. Some visual neurons respond to stimuli with a particular numerosity — the number of objects in a set. We recently discovered a parietal topographic numerosity map in which neural numerosity preferences progress gradually across the cortical surface2, analogous to sensory maps. Following this analogy, we hypothesized that there may be multiple numerosity maps. Numerosity perception is implicated in many cognitive functions, including foraging3, multiple object tracking4, dividing attention5, decision-making6 and mathematics79. Here we use ultra-high-field (7 Tesla, 7T) functional magnetic resonance imaging (fMRI) and neural-model-based analyses to reveal numerosity-selective neural populations organized into six widely separated topographic maps in each hemisphere. Although we describe subtle differences between these maps, their properties are very similar, unlike in sensory map hierarchies. These maps are found in areas implicated in object recognition, motion perception, attention control, decision-making and mathematics. Multiple numerosity maps may allow interactions with these cognitive systems, suggesting a broad role for quantity processing in supporting many perceptual and cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similar responses to numerosity in several brain regions.
Figure 2: Numerosity map network.
Figure 3: Differences in numerosity range and surface area between numerosity maps and hemispheres.
Figure 4: Numerosity tuning widths.

Similar content being viewed by others

References

  1. Wandell, B. A., Dumoulin, S. O. & Brewer, A. A. Visual field maps in human cortex. Neuron 56, 366–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Harvey, B. M., Klein, B. P., Petridou, N. & Dumoulin, S. O. Topographic representation of numerosity in the human parietal cortex. Science 341, 1123–1126 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Vallentin, D. & Nieder, A. Behavioral and prefrontal representation of spatial proportions in the monkey. Curr. Biol. 18, 1420–1425 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Piazza, M. Neurocognitive start-up tools for symbolic number representations. Trends Cogn. Sci. 14, 542–551 (2010).

    Article  PubMed  Google Scholar 

  5. Knops, A., Piazza, M., Sengupta, R., Eger, E. & Melcher, D. A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration. J. Neurosci. 34, 9857–9866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nieder, A. & Miller, E. K. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dehaene, S. The Number Sense: How the Mind Creates Mathematics (Oxford Univ. Press, 1997).

    Google Scholar 

  8. Halberda, J., Mazzocco, M. M. & Feigenson, L. Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455, 665–668 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Harvey, B. M. Quantity cognition: numbers, numerosity, zero and mathematics. Curr. Biol. 26, R419–R421 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, B. L., Hall, D. H. & Chklovskii, D. B. Wiring optimization can relate neuronal structure and function. Proc. Natl Acad. Sci. USA 103, 4723–4728 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Durbin, R. & Mitchison, G. A dimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Ramón y Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados (Madrid Nicolas Moya, 1904).

    Google Scholar 

  13. Harvey, B. M., Fracasso, A., Petridou, N. & Dumoulin, S. O. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. Proc. Natl Acad. Sci. USA 112, 13525–13530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eger, E. et al. Deciphering cortical number coding from human brain activity patterns. Curr. Biol. 19, 1608–1615 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Eger, E., Pinel, P., Dehaene, S. & Kleinschmidt, A. Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. Cereb. Cortex 25, 1319–1329 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Nieder, A., Freedman, D. J. & Miller, E. K. Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Nieder, A. & Miller, E. K. A parieto-frontal network for visual numerical information in the monkey. Proc. Natl Acad. Sci. USA 101, 7457–7462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44, 547–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Piazza, M., Pinel, P., Le Bihan, D. & Dehaene, S. A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53, 293–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Wandell, B. A., Brewer, A. A. & Dougherty, R. F. Visual field map clusters in human cortex. Phil. Trans. R. Soc. Lond. B 360, 693–707 (2005).

    Article  Google Scholar 

  21. Hochberg, Y. & Tamhane, A. C. Multiple Comparison Procedures (Wiley, 1987).

  22. Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: an alternative to least squares means. Am. Stat. 34, 216–221 (1980).

    Article  Google Scholar 

  23. Harvey, B. M. & Dumoulin, S. O. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J. Neurosci. 31, 13604–13612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hagler, D. J. Jr & Sereno, M. I. Spatial maps in frontal and prefrontal cortex. Neuroimage 29, 567–577 (2006).

    Article  PubMed  Google Scholar 

  25. Bueti, D. & Walsh, V. The parietal cortex and the representation of time, space, number and other magnitudes. Phil. Trans. R. Soc. Lond. B 364, 1831–1840 (2009).

    Article  Google Scholar 

  26. Hayashi, M. J. et al. Interaction of numerosity and time in prefrontal and parietal cortex. J. Neurosci. 33, 883–893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dehaene, S., Izard, V., Spelke, E. & Pica, P. Log or linear? Distinct intuitions of the number scale in western and Amazonian indigene cultures. Science 320, 1217–1220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsh, V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7, 483–488 (2003).

    Article  PubMed  Google Scholar 

  29. Santens, S. & Gevers, W. The SNARC effect does not imply a mental number line. Cognition 108, 263–270 (2008).

    Article  PubMed  Google Scholar 

  30. van Dijck, J. P. & Fias, W. A working memory account for spatial-numerical associations. Cognition 119, 114–119 (2011).

    Article  PubMed  Google Scholar 

  31. Dehaene, S., Bossini, S. & Giraux, P. The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 122, 371–396 (1993).

    Article  Google Scholar 

  32. Anobile, G., Cicchini, G. M. & Burr, D. C. Number as a primary perceptual attribute: a review. Perception 45, 5–31 (2016).

    Article  PubMed  Google Scholar 

  33. Hyde, D. C. Two systems of non-symbolic numerical cognition. Front. Hum. Neurosci. 5, 150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Piazza, M., Fumarola, A., Chinello, A. & Melcher, D. Subitizing reflects visuo-spatial object individuation capacity. Cognition 121, 147–153 (2011).

    Article  PubMed  Google Scholar 

  35. Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 (2003).

    Article  PubMed  Google Scholar 

  36. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284, 970–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Domenech, P. & Koechlin, E. Executive control and decision-making in the prefrontal cortex. Curr. Opin. Behav. Sci. 1, 101–106 (2015).

    Article  Google Scholar 

  38. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen Kadosh, R. et al. Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr. Biol. 17, 689–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Viswanathan, P. & Nieder, A. Differential impact of behavioral relevance on quantity coding in primate frontal and parietal neurons. Curr. Biol. 25, 1259–1269 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Ramirez-Cardenas, A., Moskaleva, M. & Nieder, A. Neuronal representation of numerosity zero in the primate parieto-frontal number network. Curr. Biol. 26, 1285–1294 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Arcaro, M. J., Pinsk, M. A., Li, X. & Kastner, S. Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J. Neurosci. 31, 2064–2078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kolster, H. et al. Visual field map clusters in macaque extrastriate visual cortex. J. Neurosci. 29, 7031–7039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315–324 (2004).

    Article  PubMed  Google Scholar 

  45. Shuman, M. & Kanwisher, N. Numerical magnitude in the human parietal lobe; tests of representational generality and domain specificity. Neuron 44, 557–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Gobel, S. M., Johansen-Berg, H., Behrens, T. & Rushworth, M. F. Response-selection-related parietal activation during number comparison. J. Cogn. Neurosci. 16, 1536–1551 (2004).

    Article  PubMed  Google Scholar 

  47. Cavdaroglu, S., Katz, C. & Knops, A. Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception. Neuroimage 116, 135–148 (2015).

    Article  PubMed  Google Scholar 

  48. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008).

    Article  PubMed  Google Scholar 

  51. Burr, D. & Ross, J. A visual sense of number. Curr. Biol. 18, 425–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Handwerker, D. A., Ollinger, J. M. & D'Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  53. Chumbley, J., Worsley, K., Flandin, G. & Friston, K. Topological FDR for neuroimaging. Neuroimage 49, 3057–3064 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Shmuel, A., Yacoub, E., Chaimow, D., Logothetis, N. K. & Ugurbil, K. Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 tesla. Neuroimage 35, 539–552 (2007).

    Article  PubMed  Google Scholar 

  55. Zuiderbaan, W., Harvey, B. M. & Dumoulin, S. O. Modeling center-surround configurations in population receptive fields using fMRI. J. Vis. 12, 10 (2012).

    Article  PubMed  Google Scholar 

  56. Amano, K., Wandell, B. A. & Dumoulin, S. O. Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J. Neurophysiol. 102, 2704–2718 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Larsson, J. & Heeger, D. J. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26, 13128–13142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Swisher, J. D., Halko, M. A., Merabet, L. B., McMains, S. A. & Somers, D. C. Visual topography of human intraparietal sulcus. J. Neurosci. 27, 5326–5337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Netherlands Organization for Scientific Research grants no. 452.08.008 to S.O.D. and no. 433.09.223 to S.O.D. and F. W. Cornelissen, and by Portuguese Foundation for Science and Technology grant no. IF/01405/2014 to B.M.H. The Spinoza Centre is a joint initiative of the University of Amsterdam, Academic Medical Centre, VU University, VU Medical Centre, Netherlands Institute for Neuroscience and the Royal Netherlands Academy of Arts and Sciences. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.M.H. and S.O.D. designed the study; B.M.H. collected and analysed data; B.M.H. wrote the manuscript with input from S.O.D.

Corresponding author

Correspondence to Ben M. Harvey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Figures 1–9, Supplementary Table 1 (PDF 6208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, B., Dumoulin, S. A network of topographic numerosity maps in human association cortex. Nat Hum Behav 1, 0036 (2017). https://doi.org/10.1038/s41562-016-0036

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-016-0036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing