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Arctic warming by abundant fine sea salt 
aerosols from blowing snow

Xianda Gong    1, Jiaoshi Zhang    1, Betty Croft    1,2, Xin Yang3, 
Markus M. Frey    3, Nora Bergner4, Rachel Y.-W. Chang2, Jessie M. Creamean5, 
Chongai Kuang6, Randall V. Martin    1,2, Ananth Ranjithkumar3, 
Arthur J. Sedlacek    6, Janek Uin    6, Sascha Willmes    7, Maria A. Zawadowicz6, 
Jeffrey R. Pierce    5, Matthew D. Shupe    8,9, Julia Schmale    4 & Jian Wang    1 

The Arctic warms nearly four times faster than the global average, and 
aerosols play an increasingly important role in Arctic climate change. In the 
Arctic, sea salt is a major aerosol component in terms of mass concentration 
during winter and spring. However, the mechanisms of sea salt aerosol 
production remain unclear. Sea salt aerosols are typically thought to be 
relatively large in size but low in number concentration, implying that their 
influence on cloud condensation nuclei population and cloud properties is 
generally minor. Here we present observational evidence of abundant sea 
salt aerosol production from blowing snow in the central Arctic. Blowing 
snow was observed more than 20% of the time from November to April. The 
sublimation of blowing snow generates high concentrations of fine-mode 
sea salt aerosol (diameter below 300 nm), enhancing cloud condensation 
nuclei concentrations up to tenfold above background levels. Using a global 
chemical transport model, we estimate that from November to April north 
of 70° N, sea salt aerosol produced from blowing snow accounts for about 
27.6% of the total particle number, and the sea salt aerosol increases the 
longwave emissivity of clouds, leading to a calculated surface warming of 
+2.30 W m−2 under cloudy sky conditions.

The climate in the Arctic has received close attention because its 
near-surface air temperature is increasing nearly four times faster than 
the global average1. This ‘Arctic amplification’ is a prominent and com-
plex feature of climate change with strong impacts on human and natu-
ral systems, not only within the Arctic but also globally2. Aerosols play 
an important role in the Arctic climate by scattering and absorbing solar 
radiation (direct radiative effects) and by modifying the properties of 
clouds (indirect effects). The indirect aerosol effects in the Arctic can 

be very impactful because low-level clouds, containing both liquid and 
ice water, are highly susceptible to changes in aerosol concentration, 
especially when the aerosol population is limited. In addition, the sen-
sitivity of the surface energy budget to cloud variability is high3. During 
the winter months in the Arctic, when solar radiation is mostly absent, 
low-level clouds warm the surface by absorption and re-emission of 
longwave radiation4. The elevated aerosol concentration due to Arctic 
haze has been shown to increase cloud droplet number concentration 
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6 December (event 2) and 22:00 on 7 December to 15:00 on 8 Decem-
ber (event 3), with average snowdrift densities representing 99, 90 
and 18 percentiles of event-mean values observed at 10 m (event 1) or 
0.1 m (events 2 and 3) during the MOSAiC expedition (Methods). The 
relative humidity with respect to ice (RHice) measured at 10 m is often 
below 100%, facilitating the sublimation of blowing snow (Fig. 1a). 
Both particle number concentrations in the fine mode (10 to 300 nm 
in diameter, N10–300nm) and NCCN at five supersaturations ranging from 
0.12% to 0.76% show strong increases during the blowing-snow events 
compared to background periods (Fig. 1b,c). For example, NCCN during 
the event on 16 November is more than tenfold above that during the 
adjacent non-blowing-snow period. The third blowing snow event on 
8 December coincides with long-range transport of biomass-burning 
plumes30. To isolate the impact of blowing snow on the aerosol popula-
tion during event 3, we subtract the contribution from biomass-burning 
aerosol before statistical analysis (Supplementary Discussion 1).  
Particle number size distributions, particle number concentrations and 
NCCN during blowing-snow events and non-blowing-snow periods are 
statistically compared in Fig. 1d–f. N10–300nm, NCCN and the concentration 
of super-micron particles (N>1,000nm) are all strongly enhanced during 
the blowing-snow events compared to non-blowing-snow values. On 
average, NCCN increases by a factor of two to three during blowing-snow 
events, suggesting a potentially substantial impact on cloud properties.

Understanding the source of the fine-mode aerosols during the 
blowing-snow events requires knowledge of their composition.  
However, it is very challenging to directly measure the chemical com-
position of the fine-mode aerosols given their extremely low mass 
concentration. Here we infer size-resolved chemical composition from 
particle hygroscopicity measurements by taking advantage of the 
differences in hygroscopicity parameter (κ)31 among major aerosol 
species, including organics (κOrganics ≈ 0.10), ammonium sulfate 
(κ(NH4)2SO4 = 0.53 − 0.61), sea salt (κNaCl = 1.12–1.28) and acidic sulfate 
(for example, κH2SO4 = 0.70 − 1.00 )31,32. Figure 2a,b shows the time 
series of particle hygroscopicities under sub-saturated conditions (κGF) 
derived from particle hygroscopic growth and under super-saturated 
conditions (κCCN) derived from CCN activation. During the 
blowing-snow events, both κGF and κCCN increase to ~0.70–1.2 from 
non-blowing-snow values of ~0.2–0.5. Figure 2d shows the median  
κ values during the blowing-snow events as a function of particle diam-
eter ranging from ~20 to 250 nm and those during non-blowing-snow 
periods. The elevated κ values above ~0.70 across the size range indi-
cate the fine-mode aerosol composition during the blowing-snow 
events is dominated by highly hygroscopic species, that is, sea salt and/
or acidic sulfate (for example, sulfuric acid).

The chemical composition of the fine-mode aerosols is fur-
ther constrained by combining the time series of sulfate, organics, 
ammonium and nitrate mass concentrations measured by an Aerosol 
Chemical Speciation Monitor (ACSM) with the particle size distribu-
tion. As SSA is refractory and cannot be reliably quantified by ACSM, 
the total mass concentration of submicron particles is derived by 
integrating particle volume size distribution from 10 to 625 nm 
(M10–625nm). The upper size limit of 625 nm is chosen to match the 
vacuum aerodynamic particle diameter of 1 μm by assuming a density 
of 1.6 g cm−3 and spherical particles (Supplementary Discussion 2). 
The mass concentration of sea salt is then calculated as the difference 
between M10–625nm and the non-refractory submicron mass concentra-
tion measured by the ACSM. We note that the sea salt mass concentra-
tion derived using this approach could also include the contribution 
of refractory primary marine organics. During the non-blowing-snow 
periods, particle κCCN and κGF values are between 0.20 to 0.50, con-
sistent with a minor contribution from sea salt and the dominance 
of submicron aerosol composition by organics and sulfate (Fig. 2e). 
The black carbon (BC) mass concentration remained constant and 
low during the first and second blowing-snow events, excluding 
the possibility of substantial impact by long-range-transported 

(CDNC) and longwave emissivity, resulting in an estimated surface 
warming under cloudy skies of between +3.3 and +5.2 W m−2 or 1 and 
1.6 °C (ref. 5). An increase in aerosol concentration also yields smaller 
cloud droplets, which are expected to inhibit the formation of  
drizzle/rain and ice precipitation, leading to enhanced cloudiness (that 
is, higher liquid water path (LWP) and cloud coverage) and additional 
surface warming in the central Arctic6.

Arctic clouds radiatively warm the surface throughout the year 
except for a period of surface cooling in the middle of summer7.  
However, the overall effects of aerosols on Arctic clouds and climate 
remain unclear8. This uncertainty is, to a large degree, due to the poor 
understanding of aerosol sources and properties in the central Arctic, 
which prevents us from representing them adequately in numerical 
models8. During summer and early fall, Arctic aerosol is dominated by 
local emissions, as the Arctic front is located further north and the polar 
dome inhibits the transport of pollution from mid-latitudes9. Major 
aerosol sources during the winter and spring include both long-range 
transport and wind-driven local production10,11. Arctic haze, a winter 
and spring phenomenon of long-range transport of lower-latitude 
emissions5,12, can strongly increase aerosol loadings and concentra-
tions of cloud condensation nuclei (CCN)13,14, which are particles that 
can form cloud droplets. Sea salt represents the highest mass fraction 
among all aerosol species during winter and spring in the Arctic14–16. At 
present, the mechanisms for the production of sea salt aerosol (SSA) 
are unclear15,17,18. Many studies attribute the SSA in the Arctic primarily 
to particle production by wave breaking and bubble bursting over the 
open ocean and leads15,18. However, recent model studies indicate that 
wintertime and springtime peaks of sea salt mass concentration in the 
Arctic can be successfully reproduced17,19 only with the inclusion of SSA 
production from blowing snow20. Field observations of sea salt mass 
concentration and number size distribution (from 400 nm to 10 μm 
in diameter) and airborne snow particles21 also suggest that blowing 
snow is a major source of SSA mass in the Antarctic during winter and 
early spring. Whereas SSAs can contribute to Aitken mode aerosols22,23, 
their sizes are relatively large, and number concentrations are often 
lower compared to aerosols from other sources24,25. Therefore, the 
conventional thinking is that while SSAs often contribute substantially 
to or even dominate high-latitude aerosol mass concentration14,15 and 
direct radiative effect26, their influences on CCN concentration (NCCN) 
and cloud properties are less pronounced25,26. A recent modelling study 
in the Antarctic suggests blowing-snow sublimation may generate a 
substantial amount of fine-mode particles27, and elevated concentra-
tions of fine-mode particles during blowing-snow events at a coastal 
Alaskan Arctic site are reported in a recent observational study28. Both 
studies raise the possibility that blowing-snow-produced SSA may 
strongly affect the Arctic climate by impacting the CCN population 
and the properties of clouds.

To elucidate the sources and climate effects of SSA in the Arctic, 
we carried out comprehensive measurements of aerosols, blowing 
snow, clouds and meteorological parameters in the central Arctic 
over an entire year from September 2019 to October 2020 during the 
Multidisciplinary drifting Observatory for the Study of Arctic Climate 
(MOSAiC) expedition (Methods). We provide observational evidence 
that the production of fine-mode SSA from sublimating blowing snow 
strongly enhances central Arctic NCCN, leading to substantial surface 
warming in the Arctic during winter and spring.

Sea salt aerosols from blowing snow
For this study, the blowing-snow events are identified when snow-
drift density, defined as the airborne snow mass per volume of air at 
ambient conditions, is above 10−5 kg m−3 and wind speed exceeds the 
blowing-snow threshold29 (criteria in Methods). Measurements dur-
ing three representative blowing-snow events are shown in Figs. 1 and 
2. These three events occurred from 04:00 to 19:00 (all times given 
in UTC) on 16 November (event 1), 17:00 on 2 December to 00:00 on  
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Fig. 1 | Meteorological parameters, particle size distribution and NCCN.  
a, Time series of snowdrift density at 10 m (November) and 0.1 m (December)  
in blue, relative humidity with respect to ice (RHice) at 10 m in green and wind 
speed at 10 m in red (values above the threshold for blowing snow) and black 
(below the threshold). b, Contour plot of particle number size distribution  
(dN/dlogDp; here Dp represents the particle diameter) from 10 to 1,000 nm, with 
time series of fine-mode particle number concentration (N10–300nm) in black and 
super-micron particle number concentration (N>1,000nm) in magenta. c, Time 
series of NCCN at different supersaturations. The gray dashed lines indicate the 

time periods of different scenarios. d, Particle number size distribution during 
blowing-snow events and adjacent non-blowing-snow (non-BS) periods (from 
00:00 on 15 to 04:00 on 16 November, 00:00 to 17:00 on 2 December and 00:00 
on 6 to 22:00 on 7 December). Lines represent median values and error bars show 
25th and 75th percentiles. e,f, Box plot of N>1,000nm, N10–300nm and NCCN at different 
supersaturations during blowing-snow events and non-BS periods. Centre lines, 
box limits and whiskers represent median values, 25th to 75th and 10th to 90th 
percentiles, respectively. Triangles represent mean values. The sample size used 
to derive the box plot is shown in the text.
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pollution. During these two events, sulfate mass concentration 
shows modest increases compared to the respective background 
periods (that is, increases of 45% and 63%, respectively), while the 
mass concentrations of fine-mode particles (M10–300nm, derived from 
particle size distribution) increase much more strongly, by 780% and 
130%, respectively. In addition, sulfate mass concentration during 
the first and second blowing-snow events can explain only 20% and 
64% of the fine-mode particle mass, respectively, even if all sulfate 
resides in the fine mode. The minor contribution of sulfate to the 
increased M10–300nm, together with the high particle hygroscopicity 
shown earlier, indicates that the fine-mode aerosols during the 
blowing-snow events are dominated by sea salt. In the absence of 
long-range transported pollution, the sudden emergence of a high 

concentration of small acidic sulfate particles is very unlikely, as 
acidic sulfate particles are not expected to be produced locally dur-
ing the polar night. During the third blowing-snow event, aerosol was 
influenced by long-range transported biomass-burning plumes30, 
as indicated by the elevated BC concentration (Fig. 2c). On average, 
sea salt represents 47% of the submicron aerosol mass, and the frac-
tion reached 66% from 10:00 to 15:00 on 8 December, consistent 
with the conclusion above that sea salt dominates the fine-mode 
aerosol. Particle hygroscopicity is also derived from bulk submicron 
aerosol composition (including sodium chloride, sulfate, organics, 
ammonium and nitrate) and agrees with κGF measured at all five 
sizes, lending additional support to the dominance of SSA during 
the blowing-snow events (Supplementary Fig. 1).
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We identify 29 blowing-snow events and find the events occurred 
over 20% of the time from November 2019 to April 2020 (Extended Data 
Fig. 1 and Extended Data Table 1). During these events, N10–300nm, N>1,000nm 
and NCCN increase up to tenfold compared to periods when blowing 
snow is absent (Fig. 1b,c and Extended Data Fig. 1). While the results 
presented above indicate that the high concentrations of fine-mode 
aerosols are dominated by SSAs during the blowing-snow events, some 
of the SSAs could be produced from frost flowers and open leads under 
strong wind conditions. However, laboratory33,34 and model17 studies 
suggest that frost flowers have a minor contribution to SSA. Unlike 
blowing-snow events that are episodic, open leads are probably omni-
present in the central Arctic. The average open lead fraction along the 
trajectory of air mass arriving at the MOSAiC location shows very dif-
ferent temporal variations with wind speed (Supplementary Fig. 2). The 
observed N10–300nm does not correlate with the calculated emissions flux 
from open leads along the trajectory (Supplementary Discussion 3).  
While sea-spray aerosols generated from the open leads probably 
contribute to fine-mode particles, the lack of correlation between the 
open leads emissions flux and N10–300nm (Supplementary Fig. 3), together 
with the coincidence of high N10–300nm with elevated snowdrift density, 
indicates that the sublimation of blowing snow is the major source of 
the observed fine-mode particles.

Mechanism of SSA production
The mechanisms of SSA production from blowing saline snow and its 
impact on the Arctic climate are illustrated in Fig. 3. Previous stud-
ies suggested that snow particles are contaminated by sea water ions 
through several pathways, including (1) upward migration of brine from 
the sea ice surface into the snowpack and (2) dry and/or wet deposition 
of SSAs generated earlier, including wind-blown sea-spray aerosols 
from the open ocean, leads or polynyas and wind-blown frost flow-
ers20,35. When the 10 m wind speed exceeds a critical value that ranges 

from 7 to 9.5 m s−1 under typical conditions, snow particles start saltat-
ing and get lofted into the atmosphere, reaching altitudes of several 
tens of metres and evolving from a drifting- to a blowing-snow event 
as wind speed increases20,21,27,36. The observation of elevated snowdrift 
density near the surface during MOSAiC coincides with wind speed 
above the critical value from ref. 29 (Supplementary Fig. 2). Ice sub-
limation reduces the size of snow particles and eventually produces 
residual particles consisting of all impurities contained in the snow 
including mainly sea salt. The size and mass concentration of SSAs are 
expected to be controlled by the blowing-snow particle size distribu-
tion, snow salinity, the number of sea salt particles produced per snow 
particle and the sublimation flux21,27. Elevated N>1,000nm was observed 
during blowing-snow events (Extended Data Fig. 1), in agreement with 
the previous suggestion that blowing snow may produce an equal or 
higher amount of super-micron particles than the open ocean21,27. The 
fine-mode particle concentration during blowing-snow events varies 
from a few hundred to more than 1,000 cm−3, which is partly due to the 
large variation of snowdrift density at 0.1 m (that is, 10−5 to 10−2 kg m−3). 
The blowing-snow-produced SSA shows a broad unimodal distribution, 
varying from 10 to 1,000 nm, with a peak around a few tens to 100 nm. 
Compared to sea-spray particles generated from the open ocean/leads 
through bubble bursting23,25, sublimating blowing snow produces a 
relatively larger fraction of fine SSA, which is higher in number con-
centration, leading to a strong impact on the CCN population and thus 
indirect radiative effects in the Arctic as shown in the next section.

Impact on aerosol and surface warming
We implement a blowing-snow aerosol emission scheme20,27 in the 
GEOS-Chem-TOMAS global chemical transport model17, which is used 
to simulate the number concentrations of blowing-snow-produced 
SSAs in the Arctic from November 2019 to April 2020 (Methods). 
The model simulation successfully captures the increase of total 
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Fig. 3 | Mechanism of SSA production from the sublimation of wind-blown 
saline snow particles and climate impacts in the Arctic. The Arctic Ocean 
surface transitions from open water to the marginal ice zone and then to packed 
ice as surface temperature decreases. A saline snow layer overlies the sea ice 
(green text and lines indicate the pathway of supplying sea salt ions to marine 
snow). In the saltation layer, the snowdrift is transported upwards in ambient air 
by winds. The snow particles are lofted into the atmosphere when wind speed 

exceeds a critical threshold. Sublimation of blowing snow produces residual 
aerosol particles, including mainly sea salt (purple text and lines indicate the 
pathway of particle production). Together with other aerosol particles, these 
blowing-snow-produced SSAs both directly reflect solar radiation (direct 
radiative effects) and act as CCN thereby influencing cloud formation and 
microphysical properties (indirect radiative effects).
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particle number concentration (Methods and Extended Data Fig. 2) 
at the MOSAiC location during the blowing-snow events. Including 
blowing-snow-produced SSA also better reproduces the measured 
particle size distribution (Extended Data Fig. 3). Averaged over the 
entire period from November to April in the region north of 70° N, 
blowing-snow-produced SSA represents about 27.6% of the total par-
ticle number (Fig. 4a).

The measured LWP at the MOSAiC location is mostly below 
40 g m−2 from November to April (Extended Data Fig. 4), suggesting 
that the clouds are often grey bodies and their emissivity is sensitive to 
the CDNC (refs. 5,7,37). The longwave indirect forcing at the MOSAiC 
location due to the blowing-snow-produced SSA is estimated by com-
bining the measured cloud LWP with CDNC calculated offline using 
the GEOS-Chem-TOMAS model output (Methods)38. The emissivity 
is calculated twice, based on the CDNC calculated with and without 
the blowing-snow-produced SSA included, following the approach 
described in refs. 5,39 (Methods). The increase in downwelling cloud 
longwave radiation, derived from the difference between the two 
cloud emissivities, varies from 1.11 to 6.19 W m−2 (monthly mean val-
ues; Extended Data Table 2) from November to April. This increase 
of longwave radiation reflects the change in cloud emissivity due to 
increased CDNC under the same measured LWP (that is, first longwave 
aerosol indirect effect). Assuming the frequency distributions of LWP 
observed at the MOSAiC location are representative of the Arctic, we 
extend the first longwave indirect forcing calculation to the Arctic 
region. When the blowing-snow-produced SSA is included, the simu-
lated CDNC increases by 10–35 cm−3 and the cloud droplet effective 
radius (re) decreases by 0.45–0.90 μm (monthly mean values; Extended 
Data Fig. 4 and Extended Data Table 2) north of 70° N. These changes 
lead to an estimated downwelling longwave radiation increase of about 
+2.30 W m−2 under cloudy skies from November to April (Fig. 4b) north 
of 70° N. Higher CCN concentrations lead to more numerous and 
smaller cloud droplets, which are also expected to inhibit the forma-
tion of drizzle/rain and ice precipitation. A reduction in precipitation 
can result in higher LWP and longer cloud lifetime, further increasing 
the downwelling cloud longwave radiation. This second longwave 

indirect effect is probably substantial but is difficult to quantify and 
hence not investigated here. In summary, fine SSA produced by sub-
limation of saline blowing snow represents an important source of 
CCN in the Arctic during winter and spring. Our calculations suggest 
that the SSA can have a strong warming effect on the Arctic surface 
temperature by increasing cloud emissivity and probably the LWP 
and lifetime of clouds as well. The SSA production from blowing snow 
is also expected to play an important role in aerosol–cloud–climate 
interactions in the Antarctic, given the prevalence of sea ice and strong 
wind conditions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Measurements
Measurement sites. Comprehensive measurements of meteorological 
conditions, aerosol, snowdrift density, cloud properties and open lead 
fraction were carried out in the framework of the MOSAiC expedition, 
which was designed to study Arctic climate change from multiple per-
spectives, including atmosphere, sea ice, snow, ocean, ecosystem and 
biogeochemistry40. The MOSAiC expedition took place in the central 
Arctic over a one-year period from September 2019 to October 2020. 
The track of the Polarstern icebreaker41, which served as the centre of 
operations during the MOSAiC expedition, and atmospheric measure-
ment set-ups are summarized in ref. 42. Measurements employed in 
this study are briefly described below.

Meteorology parameters. Ambient temperature, wind speed and 
relative humidity with respect to liquid water (RHw) were measured 
at nominal heights of 2, 6 and 10 m from a tower installed at Met City, 
which was an installation on the sea ice 300–600 m from Polarstern43. 
The wind speed measurements were made by a three-dimensional sonic 
anemometer (Metek uSonic3 Cage MP), while the temperature and RH 
were measured by Vaisala HMT330/PTU300 sensors. The measured 
RHw was then converted to relative humidity with respect to ice (RHice)44.

Snowdrift density. The size distribution of airborne snow particles 
ranging from 36 to 490 µm was measured by an open-path Snow Par-
ticle Counter (SPC-95; Niigata Electric Co., refs. 21,45) and used to 
compute snowdrift density. During the MOSAiC expedition, two SPCs 
were set up at nominal heights of 0.1 and 10 m above the snow surface 
on the Met City tower. In this study, the snowdrift density (snow mass 
per volume of air) at 0.1 m is used to identify blowing-snow events 
except for November 2019, for which snowdrift density at 10 m is used 
instead due to the missing SPC data at 0.1 m.

Aerosol measurement. Aerosol properties were measured by the 
Aerosol Observing System of the US Department of Energy’s Atmos-
pheric Radiation Measurement climate research facility46, which was 
positioned on the bow of Polarstern at 18 m above the sea ice surface. 
Aerosol samples were dried below 20% RH before being introduced 
to various instruments. The total number concentration of particles 
with diameters from 10 nm to 10 μm was measured by a Condensation 
Particle Counter (model 3772, TSI Inc.). Particle number size distri-
bution was measured by a Scanning Mobility Particle Spectrometer 
(SMPS, model 3938; TSI Inc.) and an Ultra-High-Sensitivity Aerosol 
Spectrometer (UHSAS). Assuming spherical particles, we combine the 
SMPS and UHSAS measurements to generate particle size distribution 
with volume equivalent diameter (dve) ranging from 10 to 1,000 nm. 
CCN concentration was measured by a Cloud Condensation Nuclei 
Counter47 consisting of two droplet activation columns. The super-
saturation in the first column cycled through 0.12%, 0.27%, 0.54% and 
0.76%, while the supersaturation in the second column was maintained 
at 0.49%. BC mass concentration was measured by a Single-Particle Soot 
Photometer48. The mass concentrations of non-refractory submicron 
aerosol species, including organics, sulfate, nitrate and ammonium, 
were measured by an ACSM (ref. 49). Aerosol hygroscopic growth at 
85% RH was measured by a Humidified Tandem Differential Mobility 
Analyser (HTDMA, ref. 50). The measurement cycled through dry par-
ticle diameters of 50, 100, 150, 200 and 250 nm, and the measurement 
at each dry size took about 16 minutes. Super-micron particle number 
concentration (N>1,000nm) was measured using an Aerodynamic Parti-
cle Sizer (APS model 3321; TSI Inc.), which was operated in the Swiss 
measurement container51 adjacent to the Aerosol Observing System.

Cloud microphysical properties. Clouds were observed by a suite 
of instruments onboard Polarstern, which supported the derivation 
of a cloud phase and microphysical properties product52,53. Vertical 

profiles of cloud phase type are derived from radar, lidar, ceilometer, 
microwave radiometer and radiosonde measurements54, providing 
information for this study on the occurrence and vertical location of 
liquid water clouds. The total LWP within this framework was derived 
from a combination of microwave radiometer measurements55–57.

Arctic open leads. Daily Arctic sea ice leads are retrieved based on 
Moderate Resolution Imaging Spectroradiometer thermal infrared 
data58. Here sea ice leads are identified as substantial local surface 
temperature anomalies. A variety of lead metrics is used to distinguish 
between true leads and detection artefacts with the use of fuzzy logic. 
The resulting data yield daily sea ice lead maps at a resolution of 1 km2 
from November to April.

Identification of blowing-snow events (criteria)
Blowing-snow events are identified as periods when both the following 
criteria are met: (1) snowdrift density at 0.1 m above the snow surface 
is above 10−5 kg m−3 and (2) wind speed at 10 m above the snow surface 
exceeds the critical value, which was calculated from air temperature 
based on an empirical model29. Events shorter than 4 hours in dura-
tion (that is, brief spikes in snowdrift density) are excluded from fur-
ther analysis. Adjacent events with brief gaps shorter than 2 hours 
are treated as a single continuous blowing-snow event. For Novem-
ber of 2019, the snowdrift density data at 0.1 m are not available, the 
blowing-snow events are instead defined as the periods when wind 
speed exceeds the threshold and fine-mode particle number concentra-
tion (N10–300nm) shows a strong enhancement (that is, a factor of 2) above 
the background, which is defined as 12-hour mean value of N10–300nm 
before wind speed exceeds the threshold. In addition, the snowdrift 
density measured at 10 m must exceed 10−5 kg m−3 for at least 1 hour 
during the identified events to confirm the presence of blowing snow. 
On the basis of the above criteria, blowing-snow events occurred more 
than 20% of the time from November 2019 to April 2020 (Extended 
Data Table 1). The wind speed threshold for the onset of blowing snow 
(an increase in snowdrift density) at the MOSAiC location gener-
ally matches, but is slightly lower than, the value proposed in ref. 29  
(Ranjithkumar et al., manuscript in preparation). Moreover, the thresh-
old wind speed for the onset of blowing snow is always higher than 
that for maintaining blowing snow because the additional wind stress 
is needed to overcome snow crystal bonding and initiate saltation59. 
Therefore, the stricter criteria applied here probably lead to an under-
estimate of blowing-snow event time in the Arctic.

During MOSAiC, aerosol measurements were occasionally influ-
enced by local primary pollution, including ship emissions from Polarst-
ern and human activities onboard and near the ship60. In addition, there 
are occasional gaps in the aerosol data, partially due to the challenges in 
conducting long-term measurements in the central Arctic. To statisti-
cally examine the aerosol properties during the blowing-snow events, 
we classify the period from November 2019 to April 2020 into four cat-
egories: local primary pollution periods (identified by visual detection 
and explained in ref. 60), periods with no aerosol data, blowing-snow 
events with valid aerosol data and non-blowing-snow periods with valid 
aerosol data. These four categories respectively account for about 
22.13%, 19.14%, 13.07% and 45.6% of the six months (Extended Data  
Fig. 1). The shortest duration of a blowing-snow event is about 7 hours, 
and the longest event lasted for almost three days due to sustained 
strong wind. Both fine-mode and super-micron particle number con-
centrations and NCCN are substantially higher during blowing-snow 
events (Extended Data Fig. 1). The increases of particle and CCN con-
centrations vary from event to event and can be up to more than ten 
times higher than those during non-blowing-snow periods.

Derivation of particle hygroscopicity
The humidified particle size distribution measured by the HTDMA 
is first converted to a normalized growth factor (GF = diameter after 
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humidification/initial dry diameter) distribution. We use up to three 
Gaussian distributions to fit each GF distribution. Poor fits with the sum 
of squared residuals greater than 20 are excluded from the analysis. 
About 95% of the time, only the hydrophilic mode(s) (that is, mode with 
GF greater than 1.15) is present, indicating internally mixed aerosol with 
respect to hygroscopicity. The growth factor is calculated by averag-
ing the hydrophilic mode(s). The hygroscopicity parameter under 
sub-saturation (κGF) is then calculated from the average growth factor31. 
The contour plot of particle growth factor distribution and the aver-
aged growth factor are present in Supplementary Fig. 4. As shown in 
the main text, SSA dominates fine-mode aerosol during blowing-snow 
events. Because the size of non-spherical dry sea salt particles (shape 
factor of 1.05–1.10) is overestimated by the first DMA of the HTDMA, 
the calculated GF probably represents a lower limit, leading to an 
underestimation of the particle hygroscopicity during blowing-snow 
events. Given the difference in hygroscopicity between background 
aerosol and blowing-snow-produced SSA, it is somewhat counterin-
tuitive that the GF distribution observed during the blowing-snow 
events mostly exhibits a single hydrophilic mode. This is because SSA 
dominates the aerosol population during blowing-snow events. As a 
result, the GF distribution of the background particles is completely 
overshadowed by the SSA, leading to a slightly broadened GF mode as 
shown in Supplementary Fig. 4.

Particle hygroscopicity under supersaturation is derived by com-
bining particle number size distribution and NCCN

61,62. As described 
above, aerosols are mostly internally mixed based on the HTDMA 
measurements (that is, particles of the same diameter have simi-
lar hygroscopicity). Therefore, for a given supersaturation (s), the  
critical particle activation diameter (dc) can be derived using the  
following equation:

NCCN (s) = ∫
+∞

dc(s)
n (Dp)dDp (1)

where NCCN and n(Dp) represent measured CCN concentration and 
particle number size distribution, respectively. Particle hygroscopic-
ity κCCN(s) is then derived from dc(s) and s based on κ-Köhler theory31. 
The uncertainty in derived κCCN(s) originates from the uncertainties in 
the size distributions measured by SMPS and UHSAS, supersaturation 
inside the CCN counter and measured NCCN. The uncertainty of κCCN(s) 
is quantified using a Monte Carlo approach62, and the uncertainty 
of κCCN,0.75% is shown using error bars as an example in Supplemen-
tary Fig. 1. As the dve of non-spherical dry sea salt particles is overes-
timated by the SMPS, the above method probably underestimates 
κCCN(s) values during blowing-snow events, when SSA dominates the  
aerosol population.

Global model simulation
The GEOS-Chem chemical transport model (version 13.2.1, http://wiki.
seas.harvard.edu/geos-chem/index.php/GEOS-Chem_13.2.1; https://
zenodo.org/record/5500717#.YpjnyC-cbxg) was used to simulate the 
blowing-snow-produced SSA and central Arctic aerosols. The model 
was coupled to the TwO-Moment Aerosol Sectional (TOMAS) micro-
physics scheme38,63,64 to represent aerosol particles with diameters 
ranging from 3 nm to about 10 μm using a set of 15-size bins. All simu-
lations were conducted with a 4° (latitude) × 5° (longitude) resolution 
due to the computational expense of TOMAS. The simulation used 47 
vertical levels from the Earth’s surface to 0.01 hPa. Meteorological  
fields from Modern-Era Retrospective Analysis for Research and  
Applications, Version 2 (MERRA-2)65 were used to drive the simulations. 
MERRA-2 has a spatial resolution of 1/2° (latitude) by 2/3° (longitude) 
with 72 vertical levels extending to 0.01 hPa and was re-gridded to the 
GEOS-Chem-TOMAS resolution of our simulations. For wind speed 
and temperature, two key parameters of blowing-snow parameteriza-
tion, good agreements are found between the measurements and the 

MERRA-2 data (Extended Data Fig. 2). RHice from the reanalysis data 
generally agrees with the measurement (Extended Data Fig. 2).

The GEOS-Chem-TOMAS model includes parameterizations for 
the processes of particle nucleation, coagulation, vapour condensa-
tion, wet removal66,67 and dry deposition68. These parameterizations 
allow for the simulation of size-resolved sulfate, organics, BC, sea salt, 
dust and aerosol water within the full tropospheric aerosol chemistry 
scheme of GEOS-Chem. Removals of gas-phase species are represented 
as in ref. 69. We used the Community Emissions Data System for global 
anthropogenic sources of NOx, CO, SO2, NH3, non-methane VOCs, BC 
and organic carbon70. The Global Fire Emissions Database (GFED4) 
was used for biomass-burning emissions71 and dust emissions follow-
ing ref. 72.

Sea salt emissions from the open ocean are represented using 
the parameterization developed by ref. 73. This scheme includes a 
temperature-dependent modification of the sea salt emissions 
parameterization74. We also implemented the parameterization of 
size-resolved blowing-snow SSA emissions, which was previously 
developed by ref. 17 based on the work of ref. 20. The size-resolved 
emission is distributed across the TOMAS size bins. The median snow 
salinity observed at the MOSAiC location from November to April is 
0.10 practical salinity units (PSU) (522 samples). A snow salinity of 
0.10 PSU over first-year Arctic sea ice and 0.05 PSU over multi-year 
Arctic sea ice were therefore used in our simulations, the same as the 
previous study17. We assumed that snow particle size distribution 
follows a modified gamma function20. The two parameters (α and β)  
of the gamma function were parameterized as functions of wind speed 
based on measurements during MOSAiC (Ranjithkumar et al., manu-
script in preparation) and were implemented in the model. As there 
were no direct measurements of the number of sea salt particles pro-
duced by each sublimated snow particle (that is, NP), we carried out 
simulations using both NP = 1 and NP = 5, as suggested in refs. 17,27, 
then compared the simulation results with aerosol measurements 
to constrain the NP value. Because the simulation with NP = 5 shows 
much better agreement with the measurements than the simulation 
with NP = 1, the NP = 5 simulation is designated as the base simulation 
in this study (Supplementary Discussion 4). We note that a previous 
modelling study17 also found that NP = 5 is a more appropriate value 
than NP = 1. The sensitivity of simulated particle concentrations to the 
salinities was examined, and we found that reducing the salinities by 
half only slightly changes the simulated submicron particle number 
size distribution and CCN concentration (Supplementary Discussion 5).  
The comparison between the aerosol concentrations from the base 
simulation and the measurements during MOSAiC is detailed below.

Extended Data Fig. 2 shows the comparison between the 
measured total particle number concentration (Ntotal) and 
GEOS-Chem-TOMAS-simulated Ntotal (base simulation). The inclu-
sion of blowing-snow-produced SSA in the simulation better  
captures the episodic enhancement of particle number concentrations 
during blowing-snow events. After blowing-snow-produced SSA is 
included in the simulation, the correlation coefficient (R) between the 
simulated and measured Ntotal (4 h mean values) increases from 0.43  
(p value = 1.33 × 10−35) to 0.53 (p value = 1.09 × 10−56) for the period 
between November and April. During some of the blowing-snow events, 
the simulated increase of particle concentration is more gradual com-
pared with the observation (Extended Data Fig. 2). Potential causes of 
the differences may include the relatively coarse model spatial resolu-
tion, the uncertainties associated with the blowing-snow parameteriza-
tion27 and the uncertainties in meteorological conditions. For example, 
the emissions flux of blowing-snow-produced SSA is a superlinear func-
tion of wind speed. Coarse model resolution smooths the wind speed 
variability and probably leads to underprediction of the emissions flux. 
The simulation that includes blowing-snow-produced SSA also better 
reproduces the observed particle number size distribution, especially 
in the Aitken mode particle size range. The simulation also appears 
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to overestimate the accumulation mode particle concentration even 
when blowing snow is not included (Extended Data Fig. 3), possibly 
due to excessive cloud processing and insufficient wet scavenging in 
the model38,75. Future work will include further development of the 
blowing-snow SSA parameterization and simulations with increased 
model spatial resolutions.

Estimation of the impact on cloud emissivity and surface 
warming
The effect of blowing-snow-produced SSA on longwave emission of 
Arctic clouds is evaluated from the base simulation using the same 
approach described in refs. 5,39, which reported the change of cloud 
longwave radiation due to Arctic haze. We first estimate the cloud long-
wave radiative effect at the MOSAiC location by combining the meas-
ured time series of LWP and model-simulated CDNC. The time series of 
CDNC was simulated twice, with and without blowing-snow-produced 
SSA included. The cloud droplet effective radius (re) is assumed as 
10 μm (refs. 76,77) when blowing-snow-produced SSA is included. We 
then estimate the corresponding re when blowing-snow-produced 
particles are excluded based on the change in CDNC, assuming the same 
measured LWP and thus liquid water content. The broadband cloud 
longwave emissivities (ε) with and without blowing-snow-produced 
SSA included are calculated using re, measured LWP and cloud tempera-
ture5,39. The increases in downwelling cloud longwave radiation, derived 
from the difference between the two cloud emissivities, ranges from 
1.11 to 6.19 W m−2 under cloudy skies from November to April (monthly 
mean values; Extended Data Table 2). We note this increase of longwave 
radiation reflects the change in cloud emissivity due to increased CDNC 
only (that is, first longwave aerosol indirect effect; LWP is assumed not 
to be affected by the change in CDNC). A cloudy sky condition at the 
MOSAiC location is identified when a minimum of two data points in 
the vertical column below 3 km indicates the presence of liquid, drizzle, 
liquid cloud and drizzle, rain or mixed-phase clouds using the cloud 
phase classification54. The monthly mean percentages of cloudy sky 
conditions are about 53%, 41%, 33%, 26%, 26% and 44% for the respective 
months from November 2019 to April 2020 (Extended Data Table 2).

Assuming the frequency distributions of LWP observed at the 
MOSAiC location are representative of the Arctic region, we extend 
the first longwave indirect effect estimation to the Arctic region. For 
each month from November 2019 to April 2020, the frequency distri-
bution of LWP under cloud–sky conditions is first derived from the 
measurement at the MOSAiC location. For each grid box, the change 
in re is estimated using the monthly average CDNC with and without 
blowing-snow-produced SSA included. The monthly mean first long-
wave aerosol indirect effect for the grid box is then derived from the 
increase in cloud emissivity calculated from the change in re and dif-
ferent LWP values over the range observed, weighted by the monthly 
frequency distribution of LWP. The monthly LWP frequency distribu-
tions under cloudy skies are shown in Extended Data Fig. 4.

Data availability
Total particle number concentration, particle number size distribution, 
cloud condensation nuclei number concentration, particle hygro-
scopicity, black carbon and chemical composition data are available 
in DOE ARM Data Archive (https://adc.arm.gov/discovery/#/results/
s::MOSAiC). Cloud properties data are available in DOE ARM Data Archive 
and PANGAEA (https://doi.org/10.5439/1871015; https://doi.org/ 
10.1594/PANGAEA.941389). Met City meteorological data are available 
from the National Science Foundation’s Arctic Data Center (https://
doi.org/10.18739/A2VM42Z5F). Snowdrift data are available from 
the UK Polar Data Center (https://doi.org/10.5285/7d8e401b-2c75-
4ee4-a753-c24b7e91e6e9). The Arctic open lead fraction datasets are 
available in PANGAEA (https://doi.org/10.1594/PANGAEA.955561). The 
APS data are available in PANGAEA (https://doi.pangaea.de/10.1594/
PANGAEA.960923).

Code availability
The GEOS-Chem-TOMAS model version used in this study is available 
at https://zenodo.org/record/5500717#.YpjnyC-cbxg. The MATLAB 
codes used to analyse the data are available upon request.
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Extended Data Fig. 1 | Aerosol concentrations during blowing snow events 
and non-blowing snow periods. a, The classification of periods, including 
blowing snow events with valid aerosol data (Blowing snow), non-blowing snow 
periods with valid aerosol data (Non-blowing snow), local primary pollution 
periods (Pollution)60, and periods with missing aerosol data (No data), shown 
as blue, orange, black, and white bars, respectively. b-d, Boxplot plots of CCN 
number concentration at supersaturation of 0.27% (NCCN,0.27%), particle number 

concentration in the size from 10 to 300 nm (N10-300nm), and super-micron particle 
number concentration (N>1000nm) during the blowing snow events (blue) and 
periods between two consecutive blowing snow events (orange). Center lines, 
box limits, and whiskers represent median values, 25th to 75th, and 10th to 90th 
percentiles, respectively. Triangles represent mean values. The sample size used 
to derive the boxplot is shown in Supplementary Table 1.
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Extended Data Fig. 2 | Comparison between model simulations 
and observations. a-c, Time series of wind speed, temperature, and 
RHice from MERRA-2 in black and measurement in red. d, Time series of 
GEOS-Chem-TOMAS model simulated total particle number concentration with 

blowing-snow-produced SSA included (black line) and excluded (orange line). 
Measured total particle number concentration and snowdrift density are shown 
in red and blue lines, respectively.
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Extended Data Fig. 3 | Comparison between model-simulated (NP = 5, base 
simulation) and measured submicron particle number size distribution. 
The monthly median values of the measured particle number size distribution 
are shown in black lines, with error bars showing the 25th to 75th percentiles. 

The monthly median values of particle number size distribution from the base 
simulation (NP = 5) with and without blowing-snow-produced SSA included are 
shown in red and blue lines, respectively.
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Extended Data Fig. 4 | Impact of blowing-snow-produced particles on cloud 
properties simulated by GEOS-Chem-TOMAS and measured liquid water 
path. a, Monthly mean of the change in boundary layer cloud droplet number 
concentration due to blowing-snow-produced SSA from November to April.  

b, Change in boundary layer cloud effective radius (re) due to blowing-snow-
produced SSA estimated from the monthly mean droplet number concentration 
change. c, The frequency distribution of measured liquid water path (LWP) under 
cloudy skies from November to April.
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Extended Data Table 1 | Summary of blowing snow events

Blowing snow events with valid aerosol measurements are summarized in the upper part of the table. Occasional and/or partial influence of aerosol measurements by long-range transported 
or local primary pollution is noted in the last column. Blowing snow events influenced by local primary pollution during the entire period and events with missing AOS aerosol measurements 
(including particle number size distribution, particle number concentration, and CCN concentration) are summarized in the lower part of the table. These events are not included in the 
statistical analysis of aerosol properties.
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Extended Data Table 2 | Cloud occurrence and changes in cloud microphysical and longwave radiative properties 
attributed to the blowing-snow-produced sea salt aerosols

The monthly mean values of cloud occurrence at the MOSAiC location are based on remote sensing measurements. The changes in cloud droplet number concentration (CDNC) and cloud 
effective radius (re) are based on model simulations. The longwave (LW) downwelling radiation flux at the MOSAiC location and in the Arctic region (north of 80 °N and 60 °N) attributed to the 
blowing-snow-produced SSA is derived from the changes in re and measured liquid water path (LWP).
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