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Positive correlation between wet-day 
frequency and intensity linked to universal 
precipitation drivers

Cameron McErlich    1 , Adrian McDonald    1,2, Alex Schuddeboom1, 
Gokul Vishwanathan1, James Renwick    3 & Sapna Rana4

Understanding precipitation is essential for quantifying weather and 
climate-related risks. Changes in precipitation climatology are typically 
based on independent analysis of precipitation frequency and intensity. 
Here we show that where it rains more often, it also rains harder. When 
grouping global precipitation reanalysis data and observations from the 
past 40 years into regions of similar wet-day frequency, regardless of 
geographical separation, there is a strong correlation with wet-day intensity 
distributions. These wet-day-frequency regions are also more physically 
coherent than regions based on geographical location. We find the coherent 
relationship between wet-day frequency and intensity distributions is 
partially explained by wet-day-frequency regions having similar vertical 
velocity and convective available potential energy distributions, once 
polar regions are excluded. These represent dynamic and thermodynamic 
processes that indicate how conducive wet-day-frequency regions are to 
large-scale and convective precipitation. This suggests that the main drivers 
of precipitation are universal. We also show that extreme-precipitation 
metrics are dependent on wet-day frequency within our framework. Our 
results imply that wet-day frequency could be used to derive estimates of 
extreme-precipitation climate indices and corresponding uncertainties, 
these uncertainties being related to local processes.

The spatio-temporal distribution of precipitation has critical  
impacts on the availability of water resources1, ecosystems2, 
economic growth rates3 and is also an important contributor to  
major hazards4. Precipitation distributions and how they might 
change due to climate change are also critical for quantifying soci-
etal and economic risks4 and are of particular importance in extreme 
events. Wet-day intensity and wet-day-frequency metrics are also 
commonly used independently to evaluate the simulation of pre-
cipitation within numerical weather-prediction models, reanalyses 
and climate models5,6.

The exact distribution of wet-day intensity is important because 
the impact of extreme-precipitation events escalate drastically with 
increasing intensity7. A small number of heavy-rainfall days contrib-
ute disproportionately to total precipitation compared with a large 
number of days of light precipitation8. For example, across Global 
Historical Climatology Network (GHCN) weather stations, half the 
annual precipitation falls during the wettest 12 days of the year8. The 
importance of the wet tail of the distribution is also highlighted in 
work that examined the geographic distribution of rainfall in different 
intensity classes and the frequency of each class6,9.
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zone and regions of low-precipitation frequency over desert regions. 
The effects of orography on the wet-day frequency can also be seen 
over the Andes and Himalayas. As the wet-day frequency increases in 
Fig. 1b, the distribution of wet-day intensity distributions shift towards 
higher values. These changes in behaviour demonstrate that where it 
rains more often, it also rains more intensely. Examination of Fig. 1b also 
shows that the shape of the wet-day intensity-distribution changes with 
wet-day frequency. In particular, the form of the curves in Fig. 1b change 
from sub-exponential at low wet-day frequencies to super-exponential 
as the wet-day frequency increases. This highlights that regions with 
low wet-day frequencies tend to experience larger proportions of 
their precipitation at low-precipitation rates. Conversely, regions 
with higher wet-day frequency experience larger proportions of their 
precipitation at greater precipitation rates.

This result is robust to the choice of the wet-day threshold 
(Extended Data Figs. 1 and 2). Separating precipitation into land and 
ocean regions also shows our results are relatively invariant to surface 
type (Extended Data Fig. 3). We also show that aggregating precipita-
tion measurements by wet-day frequency tends to produce similar 
results (in terms of wet-day percentiles and internal variance) to analys-
ing precipitation across similarly sized geographical regions (Extended 
Data Fig. 4). This suggests that subsetting precipitation data by the 
wet-day frequency is as valid as analysis based on geographical region, 
even though it averages spatially disparate regions together.

It has already been established that there can be a substantial dis-
parity between observational and reanalysis products when it comes 
to daily precipitation intensity18–20. To demonstrate that the relation-
ships displayed in Fig. 1 are not an artefact of the ERA5 reanalysis, they 
also have been calculated using the Global Historical Climatology 
Network (GHCN) gauge dataset21, Multi-Source Weighted-Ensemble 
Precipitation (MSWEP) v2.822, CPC MORPHing technique (CMORPH)23, 
Integrated Multi-satellite Retrievals for GPM (IMERG)24 satellite data-
sets and Modern-Era Retrospective analysis for Research and Appli-
cations, verion 2 (MERRA2)25 reanalysis. Once geographic sampling 
differences between the ERA5 and GHCN datasets are accounted for 
(as explained in Methods), the two show very similar results (Extended 
Data Fig. 5). The same aggregation methodology applied to the other 
datasets (Extended Data Fig. 6) also shows results consistent with the 
patterns observed in ERA5. Thus, this key relationship between how 
often it rains and how much it rains is not a product of how precipita-
tion is represented in the ERA5 reanalysis but represents a previously 
unidentified universal relationship.

Connecting the wet-day frequency to climate 
indices
To quantify the connection between wet-day frequency and wet-day 
intensity values observable in Fig. 1b, mean wet-day precipitation inten-
sities were determined for regions aggregated by wet-day frequency.  
A weighted linear least-squares regression was then calculated between 
the natural logarithm of the mean wet-day intensity and the wet-day 
frequency (Fig. 2a). Data were weighted based on the inverse square 
of the ratio between the standard deviation and value at each wet-day 
frequency. Figure 2a shows a strong positive correlation between the 
wet-day frequency and the logarithm of the mean wet-day intensity 
across the aggregated wet-day-frequency regions. To test whether 
this correlation was a result of averaging the precipitation intensity, 
the correlation between wet-day intensity and wet-day frequency was 
computed for each precipitation–intensity percentile (assessing the 
correlation horizontally across Fig. 1b). Extended Data Fig. 7 displays a 
range of coefficients of determination between r2 = 0.65 and r2 = 0.92, 
with the weakest correlations found in the lowest-intensity percen-
tiles. This consistent positive correlation is an indicator that the fre-
quency of precipitation is a strong control of precipitation intensity. 
These relationships are not dependent on an assumption about the 
form of the wet-day intensity distribution, unlike previous work that 

In this Article, ECMWF Reanalysis v5 (ERA5)10 output is examined 
to determine the frequency of precipitation, which is used to group 
regions by their wet-day frequency. Wet-day intensity distributions are 
then derived over these regions. This analysis is repeated for satellite, 
gauge and other reanalysis datasets to determine the robustness of 
these relationships. The statistical relationship between the wet-day 
frequency and mean wet-day intensity is shown to have a strong positive 
correlation in this framework. A range of extreme-precipitation met-
rics are also shown to be strongly positively correlated to the wet-day 
frequency. Potential drivers for the observed relationships, such as 
large-scale and convective-precipitation processes, vertical motion 
and convective available potential energy are examined to determine 
the physical basis for these relationships.

Relationship between wet-day frequency and 
intensity
To understand the relationship between the frequency and intensity 
of precipitation, we use a framework for analysing precipitation over 
regions with a similar wet-day frequency. Figure 1a shows the geo-
graphic pattern of the wet-day frequency across 40 years (1980–2019) 
of ERA5 output. This frequency is determined using a wet-day threshold 
of 1 mm d−1, which is commonly used within the community11,12. Previous 
work13 has examined precipitation changes under changing climate 
averaged over wet and dry regions. We take this further by averaging 
intensity-distribution data from regions with the same wet-day fre-
quency together. This is in contrast to many studies14–17 that analyse 
precipitation over geographical regions. Distributions of the wet-day 
intensity derived over consistent wet-day-frequency regions are shown 
in Fig. 1b and show the likelihood of particular rainfall intensities occur-
ring over a range of wet-day frequencies.

Figure 1a shows physically interpretable structures, such as 
regions of high wet-day frequency over the inter-tropical convergence 
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Fig. 1 | Relationship between wet-day frequency and intensity.  
a, The geographic distribution of wet-day frequency above a 1 mm d−1 threshold. 
b, Distributions of wet-day intensity showing cumulative precipitation values for 
aggregated regions corresponding to each percentage of the wet-day frequency 
shown in a. Here precipitation is displayed using a logarithmic scale. a and b are 
derived using ERA5 total precipitation output between 1980 and 2019.
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needed to assume an exponential distribution26,27. These strong rela-
tionships provided motivation to complete similar statistical tests on 
extreme-precipitation indices commonly used in climate studies28.

We examine two extreme-precipitation indices based on the num-
ber of days per year above a precipitation threshold. Here r10 and r20 
are defined for accumulated precipitation greater than or equal to 
10 mm d−1 and 20 mm d−1, respectively. Two metrics that quantify the 
annual total precipitation above the 95th and 99th percentiles, r95 and 
r99, are also examined. Finally, the prcptot metric defines the annual 
total precipitation on wet days (precipitation greater than or equal to 
1 mm d−1). Figure 2b–f shows strong positive correlations between the 
precipitation-extreme climate indices and wet-day frequency in each 
case. Looking at the standard deviation around the data, Fig. 2a–d 
displays small variability, except at low wet-day frequencies. This is 
not the case for the r95 and r99 metrics, which show notably higher 
variability within each wet-day frequency. This suggests that in our 
framework, many extreme-precipitation climate indices are heavily 
dependent on the wet-day frequency, but large variability in r95 and 
r99 reduces the strength of our result for these metrics.

One might argue that this strong correlation is due to a sampling 
bias introduced when averaging to 100-wet-day-frequency regions. 
However, corresponding analysis, which completes spatial averaging 
over 100 geographically coherent regions (Extended Data Fig. 8), shows 
a much-poorer correlation than those shown in Fig. 2b–f. There is there-
fore an advantage to working in the aggregated wet-day-frequency 
framework to identify these relationships.

Identifying physical drivers
Our analysis shows that the strong relationships between wet-day 
occurrence and other precipitation metrics is only notable when geo-
graphically disparate data are clustered based on wet-day frequency.  

A myriad of processes impact precipitation including large-scale atmos-
pheric dynamics, meso-scale convective and storm dynamics and local 
precipitation microphysics29. To provide physical justification for why 
precipitation changes across these regions coherently, the different 
processes that control precipitation were investigated.

Previous studies7,30–32 have shown changes in vertical velocity are 
an important influence on precipitation with larger upward velocities 
relating to larger precipitation intensities. Given this, we derived distri-
butions of ERA5 vertical velocities (in pressure coordinates, negative 
values identifying ascent) grouped based on wet-day frequency. The 
literature also identifies both dynamical and thermodynamical drivers 
can impact the wet-day intensity29,31. Therefore, we also analysed the 
convective available potential energy (CAPE) metric33,34 to examine how 
the vertical thermodynamic structure of the atmosphere might impact 
the observed relationship. Figure 3a shows distributions of ERA5 verti-
cal velocity at the 850 hPa level, and Fig. 3b shows ERA5 CAPE grouped 
based on the wet-day-frequency values. To connect back to precipitation 
processes, the amount of precipitation associated with both large-scale 
and convective precipitation in the ERA5 dataset was also determined 
for wet-day frequency. As previous work has identified errors due to 
detection of snowfall over high latitudes35–37, areas polewards of 60° 
latitude have been removed from this analysis. For latitude-restricted 
wet-day intensity distributions, Fig. 3c shows the amount of large-scale 
precipitation as a fraction of the total precipitation.

Vertical velocity distributions in Fig. 3a show that regions with 
larger wet-day frequencies and therefore higher precipitation–intensity 
rates relate to regions with higher ascent rates and have distributions 
skewed towards ascent. A correlation between the vertical velocity 
and wet-day frequency (Extended Data Fig. 9) displays a coefficient of 
determination of r2 = 0.27, meaning that changes in vertical velocity 
potentially account for 27% of the variability in the wet-day frequency. 
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Figure 3b shows that regions with the highest frequency and therefore 
intensity also occur in regions that have the greatest CAPE. A similar 
spatial analysis (Extended Data Fig. 9) displays a coefficient of determi-
nation of r2 = 0.23. These distributions of higher ascent rates and higher 
values of CAPE for regions with higher wet-day frequency can both be 
interpreted as reflecting higher occurrence of environments conducive 
to precipitation. Furthermore, Fig. 3c shows a shift in the fraction of 
large-scale precipitation as the wet-day frequency increases. Excluding 
polar regions, convective precipitation dominates at places with low 
wet-day frequency while large-scale precipitation dominates elsewhere.

Figure 3 indicates that most extreme-precipitation events are 
dominated by large-scale processes, such as cyclones, fronts and the 
slow ascent of air in synoptic systems. This is coherent, because while 
convective-precipitation events are related to high rainfall rates, they 
generally have a short duration. Conversely, large-scale precipitation 
events have lower rainfall rates occurring over a larger portion of the 
day38,39. Thus, when precipitation intensities are averaged over a day, 
large-scale precipitation will produce higher precipitation intensi-
ties. Our result that the distributions of vertical velocity and CAPE 
change considerably as a function of wet-day frequency therefore 
identifies that both these metrics are important drivers of large-scale 
precipitation-generating processes. This provides a physical explana-
tion of the relationship between wet-day frequency and the wet-day 
intensity distribution observed in Fig. 1b.

Discussion and outlook
Our work focuses on analysing precipitation over regions of similar 
wet-day frequency, effectively aggregating wet and dry regions in a 

consistent way globally. The central result of this study is that there 
is a strong relationship between the frequency of wet days and the 
intensity distribution of precipitation on those days across disparate 
regions of the globe. We have shown wet-day-frequency regions have 
similar variability to geographical regions (Extended Data Fig. 4) and 
correspond to places with distributions of vertical velocity and CAPE 
that are conducive to precipitation. This suggests that using wet-day 
frequency to analyse precipitation is more physically coherent than 
using geographical regions, as our framework displays a connection 
between precipitation and its dynamic and thermodynamic drivers. 
This previously unquantified relationship provides a framework for 
understanding precipitation and how it might change in a warming 
world, which we believe could have important ramifications for model 
evaluation and fundamental understanding of the relative importance 
of drivers of precipitation in different regions. Our results imply that 
fundamentally, the processes that drive precipitation are universal.

Our framework provides an aggregated overview of the properties 
of precipitation and important physical drivers. When assessing local 
distributions of precipitation, other factors and processes would cause 
uncertainties in any estimates. Extended Data Fig. 9 shows that CAPE 
and vertical velocity account for approximately 50% of the variance in 
the wet-day frequency. However, we would expect local factors, such 
as orographic forcing to dominate over other regions and cause devia-
tions from the distributions of wet-day intensity seen on Fig. 1b. This 
provides an interesting possibility to look at anomalies from the norm 
to identify regionalized drivers. We also note that the temporal resolu-
tion of the available datasets used will potentially impact the results of 
aggregation, given that different precipitation types (convective and 
stratiform) scale differently38,40.

While some studies identify the importance of the combination 
of wet-day frequency and wet-day intensity, they have not explored 
fully the relationship between these factors. An inspection of previous 
literature does show that this relationship is previously implied8,17,19,27,41. 
For example, one study27 used principal component analysis to derive 
the most important relations between observed precipitation and the 
two precipitation metrics from thousands of rain gauges. However, 
the intensity–frequency relationship would have been very difficult to 
identify given the limited geographic coverage of the gauge network 
globally. Another study41 looking at the climatological characteristics 
of precipitation identifies a link between the geographical pattern of 
the most common precipitation intensity and the geographical pattern 
of the precipitation-frequency peak. While those authors show the 
existence of a frequency–intensity link, they do not explore the link 
between frequency and the rainfall-intensity distribution detailed in 
this study or examine the implications of their findings.

One common set of precipitation metrics used to compare across 
gauge-based, satellite, reanalyses and climate-model outputs are 
extreme climate indices. Their standardization by the Expert Team on 
Climate Change Detection and Indices (ETCCDI)42 allows for compari-
son across various timescales and resolutions, even for the gauge-based 
datasets that suffer from sampling biases due to sparse coverage and 
short observational records. Our results show that when averaging 
using wet-day frequency, there is a strong positive correlation between 
the wet-day frequency and many of the precipitation-related extreme 
climate indices. While variance within these mean statistics exists, 
especially for the r95 and r99 indices, the appearance of such a strong 
correlation when framing the analysis in a different way highlights that 
many of these climate metrics are not independent. However, most 
studies of precipitation-related climate indices43–45 assess them as 
independent metrics and ultimately could be impacted by our result.

Effectively, results in this study suggest that getting the 
wet-day frequency correct can provide understanding of some 
of the more complex climate indices. This is useful in the case of 
extreme-precipitation-related indices (for example, r95, r99) as 
long-term datasets are required to get an accurate representation of 
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the tail of the precipitation distribution. In addition, the relationships 
between wet-day frequency and intensity could be used to help further 
identify the relative importance of physical drivers of precipitation 
and their impact on the precipitation–intensity distribution. Research 
efforts have created global analyses fitting generalized extreme-value 
parameters to precipitation–intensity distributions geographically46 
but have not offered opportunities for any physical insight given their 
statistical nature.

Past research suggests that many precipitation products should 
be used in studies, as none provide a single best estimate of precipita-
tion47,48. While six different datasets were used in this study to verify our 
findings, a limitation of this study remains a lack of intercomparison. 
Forthcoming work will focus on evaluating a larger number of com-
monly used precipitation datasets, reanalyses and Coupled Model 
Intercomparison Project Phase 6 (CMIP6) climate-model outputs to 
more completely assess how the precipitation frequency–intensity 
relation, climate indices and the physical processes that drive them 
are represented across these products.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
ERA5
ECMWF Reanalysis v5 (ERA5) is a climate reanalysis produced by the 
European Centre for Medium-Range Weather Forecasts (ECMWF), 
combining observational measurements with model output to pro-
vide a consistent gridded product for recent climate10. ERA5 total, 
convective and large-scale precipitation components, pressure 
vertical velocity and convective available potential energy output 
between 1980 and 2019 are used in this study. ERA5 total precipi-
tation consists of both rain and snow at Earth’s surface and is the 
sum of the ERA5 large-scale and convective-precipitation fields, 
which are also used in this study. This variable does not include 
precipitation that evaporates in the atmosphere before it lands at 
Earth’s surface or fog and dew10. All the ERA5 outputs used in this 
study are available on a 0.25° × 0.25° spatial grid and at an hourly 
temporal resolution, which was sampled at a three hourly interval. 
In the underlying ERA5 model, large-scale precipitation is produced 
from the large-scale (stratiform) cloud microphysical processes 
and denotes both rain and snow, while convective precipitation is 
produced by the convective parameterization scheme and relates to 
a single-grid box column when convection is diagnosed. Convective 
available potential energy is an metric of the stability of the atmos-
phere and can be used to assess the potential for the development 
of convection. Using pressure as the vertical coordinate, negative 
vertical velocities represent regions of ascent and positive vertical 
velocities represent descending air. Regions of ascent are important 
in the formation of precipitation30.

GHCN station data
In addition to the ERA5 reanalysis dataset, gauge data included in the 
Global Historical Climatology Network21 (GHCN) were also analysed 
to investigate the robustness of ERA5 results. Gauge data must be 
quality controlled to ensure data artefacts are removed. In this study, 
only gauge stations that operated from 1980 to 2019 were consid-
ered. We also used the GHCN quality flag system to remove potentially 
low-quality data and we remove stations above 60° N or below 60° S to 
avoid regions with a risk of frequent snow in the gauges. These stations 
were then aggregated into a global grid with the same resolution as the 
ERA5 data to reduce sampling biases due to the uneven distribution 
of stations. There will, however, still be strong sampling biases in the 
gauge data due to the regions with large areas of no station coverage, 
such as Asia and Africa, and the complete absence of data over the 
oceans. Because of these biases, when this data are compared to ERA5 
(Extended Data Fig. 5), only ERA5 grid cells that have a corresponding 
GHCN measurement are examined.

MSWEP
We also used the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) v2.8 dataset22; this uses a combination of satellite, gauge 
and reanalysis datasets between 1980 and 2019. The MSWEP v2.8 com-
bines IMERG data24 with other datasets (including ERA5) to produce 
a consistent dataset over both the ocean and land at daily resolution 
on a 0.1° × 0.1° grid. Given the presence of gauge and satellite data in 
MSWEP v2.8 and coverage over the entire 40-year period used for ERA5, 
we believe MSWEP is a valuable product for assessing the robustness 
of our conclusion between datasets.

CMORPH
We also used the CPC Morphing technique (CMORPH) high-resolution 
global satellite precipitation dataset23. Satellite data are merged into a 
precipitation product that is then bias corrected using CPC daily gauge 
data over land and Global Precipitation Climatology Project (GPCP) 
gauge data over the ocean. We use data between 2001 and 2019 at daily 
resolution on a 0.25° × 0.25° grid. Note that CMOPRH data have only 
spatial coverage between 60° N and 60° S.

IMERG
We also used the Integrated Multi-satellitE Retrievals for GPM (IMERG) 
V05 precipitation dataset24. IMERG combines information from multi-
ple satellites present in the core GPM constellation. The IMERG dataset 
aims at deriving precipitation by intercalibrating and merging ‘all’ 
the available microwave sensors, along with microwave-calibrated 
infrared satellite estimates and precipitation gauge analyses. V05 of 
the IMERG product has a 0.1° × 0.1° spatial resolution, and daily data 
were used between 2001 and 2019. Due to an observed discontinuity in 
the wet-day frequency at 60° N and 60° S, polar regions were excluded.

MERRA2
Finally, we use the Modern-Era Retrospective analysis for Research and 
Applications, Version 2 (MERRA2) dataset25. MERRA2 is a reanalysis 
dataset that combines observations data with climate-model output 
to provide a consistent gridded product. We use data between 1980 
and 2012 at a daily resolution on a 0.625° × 0.5° spatial grid.

Wet-day frequency
The geographical distribution of wet-day frequency was derived for 
each grid cell of the observational products irrespective of their resolu-
tion. A period was marked as precipitating if the accumulated precipita-
tion was greater than a 1 mm-per-day threshold and non-precipitating 
otherwise; this threshold is commonly used within the community11,12 
and is also used in a number of extreme-precipitation indices exam-
ined28. Products with sub-daily resolution were identified as precipitat-
ing if their accumulation over the period since the last measurement 
corresponded to an equivalent accumulation of 1 mm over a full day.

Wet-day intensity
Precipitation data were then aggregated into regions where the wet-day 
frequency was the same. For these regions, precipitation was grouped 
together to derive cumulative precipitation–intensity distributions. As 
for the wet-day frequency, a 1 mm d−1 equivalent threshold was applied 
such that only wet days were considered. This process averages spa-
tially disparate regions together, but this averaging produces a range 
of distributions that are similar to those identified when calculating 
regional or zonal means (Extended Data Fig. 4), which is common in 
the literature14–17. We also demonstrate later that key properties that 
help define the likelihood and intensity of precipitation, such as vertical 
velocity30–32 and convective available potential energy33,34 are coherent 
across these regions.

Climate indices
Commonly used extreme-precipitation indices based on the recom-
mendations of the Expert Team on Climate Change Detection and Indi-
ces (ETCCDI) are also examined in this study28,42. Five indices (prcptot, 
r10, r20, r95 and r99) were chosen, with a particular focus on indices 
that represent the extreme precipitation. r10 and r20 are defined as 
the annual count of days where precipitation is greater than or equal 
to 10 mm d−1 and 20 mm d−1, respectively. prcptot is defined as the 
annual total precipitation on wet days where precipitation is greater 
than or equal to 1 mm d−1. r95 and r99 are defined as the annual total 
precipitation that occurs above the 95th and 99th percentiles of the 
precipitation distribution. Climate indices were determined globally 
across the 1980–2019 period for each ERA5 grid cell and then averaged 
when the wet-day-frequency clustering was applied.

Data availability
The ERA5 reanalysis products were obtained from the Copernicus 
Climate Data Store (https://cds.climate.copernicus.eu/). GHCN station 
data are available from National Oceanic and Atmospheric Administra-
tion National Centers for Environmental Information website (https://
www.ncei.noaa.gov/data/global-historical-climatology-network-daily). 
MSWEP data are available through Google Drive with the access process 
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detailed on their website (http://www.gloh2o.org/mswep/). CMORPH 
data are available from NOAA National Centers for Environmental Infor-
mation website (https://doi.org/10.25921/w9va-q159). IMERG data are 
available from NASA. MERRA2 data are available at the Goddard Earth 
Sciences (GES) Data and Information Services Center (DISC) (https://
disc.gsfc.nasa.gov/datasets?project=MERRA-2). Data used to visualize 
the figures are available at https://doi.org/10.5281/zenodo.6929755.

Code availability
Custom code generated in this study is available at https://doi.org/ 
10.5281/zenodo.6929755.
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Extended Data Fig. 1 | Changing the wet-day threshold to 0.5 mm. In order to test the robustness of the result in Fig. 1, the wet-day threshold was changed from 
1 mm/day to 0.5 mm/day a) the geographic distribution of wet-day frequency above a 0.5 mm/day threshold and b) distributions of wet-day intensity for regions 
corresponding to each percentage of the wet-day frequency.
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Extended Data Fig. 2 | Changing the wet-day threshold to 2 mm. In order to test the robustness of the result in Fig. 1, the wet-day threshold was changed from 1 mm/
day to 2 mm/day a) the geographic distribution of wet-day frequency above a 2 mm/day threshold and b) distributions of wet-day intensity for regions corresponding 
to each percentage of the wet-day frequency.
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Extended Data Fig. 3 | Wet-day intensity distributions separated over ocean 
and land. Further analysis was done to assess whether aggregating regions of a 
similar wet-day frequency over only ocean or land would impact the results seen 

on Fig. 1 a) distributions of wet-day intensity derived using ERA5 over ocean for 
regions corresponding to each percentage of the wet-day frequency. b) same as 
a) but over land.
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Extended Data Fig. 4 | Variability of wet-day frequency regions against 
geographic regions. Variability of precipitation intensity across (a–d) 
geographical regions and (e–h) specific wet-day frequencies. (i–l) differences 
between the two, with means adjusted to match and standard deviation 
converted based on a percentage of the unadjusted mean. Black lines indicate 

the mean while the coloured lines and shaded region indicates the standard 
deviation. The bounds of chosen geographic regions (inset on a-d) are selected to 
be comparable to the area covered by a given wet-day frequency, and the wet-day 
frequencies are chosen as the mean frequency within each geographical region.
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Extended Data Fig. 5 | Wet-day percentiles of GHCN station data. To explore 
the robustness of the precipitation distributions derived from the ERA5 data we 
also look at the GHCN rain gauge data a) the locations of the grid cells for which 
the GHCN has valid measurements and as such make up the data used in panels 

b) and c) b) distributions of wet-day intensity for each percentage of the wet-day 
frequency from the GHCN. c) a recreation of b) exclusively using ERA-5 data from 
the same grid points as the included GHCN analysis.
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Extended Data Fig. 6 | Wet-day percentiles of MSWEP, CMORPH, IMERG and 
MERRA2 data. a) the geographic distribution of wet-day frequency above a 1 
mm/day threshold between 1980 - 2019 derived using the MSWEP dataset.  
b) distributions of wet-day intensity for regions corresponding to each percentage 
of the wet-day frequency derived using the MSWEP dataset. c) the same as a) but 

for CMORPH between 2001–2019 and 60N/S. d) same as b) but for CMORPH. e) 
the same as a) but for IMERG between 2001–2019 and 60N/S. f) same as b) but  
for IMERG g) same as a) but for MERRA2 between 1980–2012 h) same as b) but  
for MERRA2.
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Extended Data Fig. 7 | Wet-day frequency correlation at a given wet-day intensity percentile. The coefficient of determination between the wet-day frequency and 
wet-day intensity values from Fig. 1b at a given intensity percentile. This assesses the correlation horizontally across Fig. 1b.
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Extended Data Fig. 8 | Spatial correlation of precipitation related climate 
indices. Matrix comparing the spatial correlation wet-day frequency with a 
number of precipitation-related climate metrics. Because analysis in Fig. 2 works 

out a correlation across 100 regions of wet-day frequency, the ERA-5 data was 
resampled to a spatial grid with 100 regions (a ten by ten grid across the globe) to 
explore any potential bias associated with averaging.
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Extended Data Fig. 9 | Spatial correlation of CAPE and vertical velocity. Frequency of occurrence of a) ERA vertical velocity days where ascent occurs and b) ERA5 
CAPE output. Both a) and b) are overlaid with the wet-day frequency from Fig. 1a (black contours).
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