Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes

Abstract

Estimates of the volume of the earliest crust based on zircon ages and radiogenic isotopes remain equivocal. Stable isotope systems, such as molybdenum, have the potential to provide further constraints but remain underused due to the lack of complementarity between mantle and crustal reservoirs. Here we present molybdenum isotope data for Archaean komatiites and Phanerozoic komatiites and picrites and demonstrate that their mantle sources all possess subchondritic signatures complementary to the superchondritic continental crust. These results confirm that the present-day degree of mantle depletion was achieved by 3.5 billion years ago and that Earth has been in a steady state with respect to molybdenum recycling. Mass balance modelling shows that this early mantle depletion requires the extraction of a far greater volume of mafic-dominated protocrust than previously thought, more than twice the volume of the continental crust today, implying rapid crustal growth and destruction in the first billion years of Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation of δ98Mo in komatiites, picrites and major mantle and crustal reservoirs.
Fig. 2: Schematic Mo evolution of Earth’s mantle and crust during planetary differentiation.
Fig. 3: Partial-melting model showing that the degree of enrichment of heavy Mo isotopes in the melt phase is controlled by both temperature and the valance state of Mo.
Fig. 4: Results of Mo isotope mass balance calculations that estimate the mass of crust extraction required to balance the composition of the depleted mantle.

Similar content being viewed by others

Data availability

All data generated during this study are included in the published article and its supplementary information files.

References

  1. Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998).

    Article  Google Scholar 

  2. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  3. Korenaga, J. Estimating the formation age distribution of continental crust by unmixing zircon ages. Earth Planet. Sci. Lett. 482, 388–395 (2018).

    Article  Google Scholar 

  4. Campbell, I. H. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am. J. Sci. 303, 319–351 (2003).

    Article  Google Scholar 

  5. Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).

    Article  Google Scholar 

  6. McCulloch, M. T. & Bennett, V. C. Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta 58, 4717–4738 (1994).

    Article  Google Scholar 

  7. DePaolo, D. J. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–1196 (1980).

    Article  Google Scholar 

  8. Jacobsen, S. B. Isotopic and chemical constraints on mantle–crust evolution. Geochim. Cosmochim. Acta 52, 1341–1350 (1988).

    Article  Google Scholar 

  9. Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2013).

    Article  Google Scholar 

  10. O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. Solid Earth 84, 6091–6101 (1979).

    Article  Google Scholar 

  11. Burkhardt, C., Hin, R. C., Kleine, T. & Bourdon, B. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation. Earth Planet. Sci. Lett. 391, 201–211 (2014).

    Article  Google Scholar 

  12. Liang, Y.-H. et al. Molybdenum isotope fractionation in the mantle. Geochim. Cosmochim. Acta 199, 91–111 (2017).

    Article  Google Scholar 

  13. Voegelin, A. R., Pettke, T., Greber, N. D., von Niederhäusern, B. & Nägler, T. F. Magma differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean Arc). Lithos 190–191, 440–448 (2014).

    Article  Google Scholar 

  14. Yang, J. et al. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochim. Cosmochim. Acta 205, 168–186 (2017).

    Article  Google Scholar 

  15. Greber, N. D., Pettke, T. & Nägler, T. F. Magmatic–hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190–191, 104–110 (2014).

    Article  Google Scholar 

  16. Hin, R. C., Burnham, A. D., Gianolio, D., Walter, M. J. & Elliott, T. Molybdenum isotope fractionation between Mo4+ and Mo6+ in silicate liquid and metallic Mo. Chem. Geol. 504, 177–189 (2019).

    Article  Google Scholar 

  17. Greber, N. D., Puchtel, I. S., Nägler, T. F. & Mezger, K. Komatiites constrain molybdenum isotope composition of the Earth’s mantle. Earth Planet. Sci. Lett. 421, 129–138 (2015).

    Article  Google Scholar 

  18. Willbold, M. & Elliott, T. Molybdenum isotope variations in magmatic rocks. Chem. Geol. 449, 253–268 (2017).

    Article  Google Scholar 

  19. Freymuth, H., Vils, F., Willbold, M., Taylor, R. N. & Elliott, T. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet. Sci. Lett. 432, 176–186 (2015).

    Article  Google Scholar 

  20. Gaschnig, R. M. et al. The molybdenum isotope system as a tracer of slab input in subduction zones: an example from Martinique, Lesser Antilles arc. Geochem. Geophys. Geosyst. 18, 4674–4689 (2017).

    Article  Google Scholar 

  21. König, S., Wille, M., Voegelin, A. & Schoenberg, R. Molybdenum isotope systematics in subduction zones. Earth Planet. Sci. Lett. 447, 95–102 (2016).

    Article  Google Scholar 

  22. Bezard, R., Fischer-Gödde, M., Hamelin, C., Brennecka, G. A. & Kleine, T. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 453, 171–181 (2016).

    Article  Google Scholar 

  23. Sossi, P. A. et al. Petrogenesis and geochemistry of Archean komatiites. J. Petrol. 57, 147–184 (2016).

    Article  Google Scholar 

  24. Kerr, A. C. et al. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints. Lithos 37, 245–260 (1996).

    Article  Google Scholar 

  25. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    Article  Google Scholar 

  26. McCoy-West, A. J., Godfrey Fitton, J., Pons, M.-L., Inglis, E. C. & Williams, H. M. The Fe and Zn isotope composition of deep mantle source regions: insights from Baffin Island picrites. Geochim. Cosmochim. Acta 238, 542–562 (2018).

    Article  Google Scholar 

  27. Leitzke, F. P. et al. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet. Sci. Lett. 474, 503–515 (2017).

    Article  Google Scholar 

  28. McCoy-West, A. J., Bennett, V. C., O’Neill, H. S. C., Hermann, J. & Puchtel, I. S. The interplay between melting, refertilization and carbonatite metasomatism in off-cratonic lithospheric mantle under Zealandia: an integrated major, trace and platinum group element study. J. Petrol. 56, 563–604 (2015).

    Article  Google Scholar 

  29. Puchtel, I. S. et al. Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield. Contrib. Mineral. Petrol. 124, 273–290 (1996).

    Article  Google Scholar 

  30. Keppler, H. & Wyllie, P. J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF. Contrib. Mineral. Petrol. 109, 139–150 (1991).

    Article  Google Scholar 

  31. Keller, B. & Schoene, B. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481, 290–304 (2018).

    Article  Google Scholar 

  32. Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    Article  Google Scholar 

  33. McDonough, W. F. in Treatise on Geochemistry 1st edn, Vol. 2 (eds Holland, H. D. & Turekian, K. K.) 547–568 (Elsevier, 2003).

  34. Hin, R. C., Burkhardt, C., Schmidt, M. W., Bourdon, B. & Kleine, T. Experimental evidence for Mo isotope fractionation between metal and silicate liquids. Earth Planet. Sci. Lett. 379, 38–48 (2013).

    Article  Google Scholar 

  35. Savage, P. S. et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem. Perspect. Lett. 1, 53–64 (2015).

    Article  Google Scholar 

  36. McCoy-West, A. J., Millet, M.-A. & Burton, K. W. The neodymium stable isotope composition of the silicate Earth and chondrites. Earth Planet. Sci. Lett. 480, 121–132 (2017).

    Article  Google Scholar 

  37. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  Google Scholar 

  38. Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    Article  Google Scholar 

  39. Jahn, B.-M., Gruau, G. & Glikson, A. Y. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib. Mineral. Petrol. 80, 25–40 (1982).

    Article  Google Scholar 

  40. Neely, R. A. et al. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland. Earth Planet. Sci. Lett. 486, 108–118 (2018).

    Article  Google Scholar 

  41. O’Neill, H. S. C. & Eggins, S. M. The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  42. Hibbert, K. E. J., Williams, H. M., Kerr, A. C. & Puchtel, I. S. Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present. Earth Planet. Sci. Lett. 321–322, 198–207 (2012).

    Article  Google Scholar 

  43. Nicklas, R. W. et al. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250, 49–75 (2019).

    Article  Google Scholar 

  44. Moyen, J.-F. & Laurent, O. Archaean tectonic systems: a view from igneous rocks. Lithos 302–303, 99–125 (2018).

    Article  Google Scholar 

  45. Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    Article  Google Scholar 

  46. Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  47. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  48. O’Neill, C., Debaille, V. & Griffin, W. Deep earth recycling in the Hadean and constraints on surface tectonics. Am. J. Sci. 313, 912–932 (2013).

    Article  Google Scholar 

  49. Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat. Geosci. 10, 698–703 (2017).

    Article  Google Scholar 

  50. Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2013).

    Google Scholar 

  51. Kerr, A. C. La Isla de Gorgona, Colombia: a petrological enigma? Lithos 84, 77–101 (2005).

    Article  Google Scholar 

  52. Rudge, J. F., Reynolds, B. C. & Bourdon, B. The double spike toolbox. Chem. Geol. 265, 420–431 (2009).

    Article  Google Scholar 

  53. Willbold, M. et al. High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined by double-spike MC-ICP-MS. Geostand. Geoanal. Res. 40, 389–403 (2016).

    Google Scholar 

  54. Greber, N. D., Siebert, C., Nägler, T. F. & Pettke, T. δ98/95Mo values and molybdenum concentration data for NIST SRM 610, 612 and 3134: towards a common protocol for reporting Mo data. Geostand. Geoanal. Res. 36, 291–300 (2012).

    Article  Google Scholar 

  55. Goldberg, T. et al. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J. Anal. At. Spectrom. 28, 724–735 (2013).

    Article  Google Scholar 

  56. Creech, J. B. & Paul, B. IsoSpike: improved double-spike inversion software. Geostand. Geoanal. Res. 39, 7–15 (2015).

    Article  Google Scholar 

  57. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

    Article  Google Scholar 

  58. Li, Y. et al. Controlling mechanisms for molybdenum isotope fractionation in porphyry deposits: the Qulong example. Econ. Geol. 114, 981–992 (2019).

    Article  Google Scholar 

  59. Zhao, P.-P. et al. Molybdenum mass fractions and isotopic compositions of international geological reference materials. Geostand. Geoanal. Res. 40, 217–226 (2015).

    Article  Google Scholar 

  60. Yang, J. et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland. Geochim. Cosmochim. Acta 162, 126–136 (2015).

    Article  Google Scholar 

  61. Jacobsen, S. B. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. Solid Earth 84, 7411–7427 (1979).

    Article  Google Scholar 

  62. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Selby for access to carius tube facilities. This project was funded by a European Research Council Starting Grant (‘HabitablePlanet’ 306655) to H.M.W. and a NERC Grant (NE/M0003/1) to K.W.B. While at Monash A.J.M.-W., P.C. and P.A.C. were supported by ARC grant FL160100168.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M.-W., K.W.B. and H.M.W. conceived the study. A.J.M.-W. undertook the chemistry and mass spectrometry with assistance from G.M.N. J.G.F., A.C.K. and P.S. provided the samples. A.J.M.-W. and P.C. developed the mass balance modelling. A.M.W. and P.S. developed the Mo isotope partial melting model. A.J.M.-W. wrote the paper, while all the authors contributed to discussions on early crustal volumes and editing the paper.

Corresponding author

Correspondence to Alex J. McCoy-West.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information Primary handling editor(s): Melissa Plail; James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–11 and Tables 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy-West, A.J., Chowdhury, P., Burton, K.W. et al. Extensive crustal extraction in Earth’s early history inferred from molybdenum isotopes. Nat. Geosci. 12, 946–951 (2019). https://doi.org/10.1038/s41561-019-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0451-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing