Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia

Abstract

Glaciers in High Mountain Asia have experienced heterogeneous rates of loss since the 1970s. Yet, the associated changes in ice flow that lead to mass redistribution and modify the glacier sensitivity to climate are poorly constrained. Here we present observations of changes in ice flow for all glaciers in High Mountain Asia over the period 2000–2017, based on one million pairs of optical satellite images. Trend analysis reveals that in 9 of the 11 surveyed regions, glaciers show sustained slowdown concomitant with ice thinning. In contrast, the stable or thickening glaciers of the Karakoram and West Kunlun regions experience slightly accelerated glacier flow. Up to 94% of the variability in velocity change between regions can be explained by changes in gravitational driving stress, which in turn is largely controlled by changes in ice thickness. We conclude that, despite the complexities of individual glacier behaviour, decadal and regional changes in ice flow are largely insensitive to changes in conditions at the bed of the glacier and can be well estimated from ice thickness change and slope alone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual glacier velocity anomalies for High Mountain Asia (2000–2017).
Fig. 2: Glacier velocity and thickness trends for High Mountain Asia (2000–2016).
Fig. 3: Observed velocity change versus mass balance and driving stress change for 11 subregions of HMA.

Similar content being viewed by others

Data availability

The mean and annual velocity fields will be made publicly available in early 2019 as part of the NASA MEaSUREs - ITS_LIVE project and will be distributed though the National Snow and Ice Data centre. Data can be made available immediately through request to the authors.

References

  1. Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).

    Article  Google Scholar 

  2. Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  Google Scholar 

  3. Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Article  Google Scholar 

  4. Kääb, A., Treichler, D., Nuth, C. & Berthier, E. Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9, 557–564 (2015).

    Article  Google Scholar 

  5. Gardelle, J., Berthier, E., Arnaud, Y. & Kääb, A. Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7, 1263–1286 (2013).

    Article  Google Scholar 

  6. Zhou, Y., Li, Z., Li, J., Zhao, R. & Ding, X. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 210, 96–112 (2018).

    Article  Google Scholar 

  7. Heid, T. & Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6, 467–478 (2012).

    Article  Google Scholar 

  8. Radić, V. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 42, 37–58 (2014).

    Article  Google Scholar 

  9. Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    Article  Google Scholar 

  10. Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 3, 54 (2015).

    Article  Google Scholar 

  11. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  12. Clarke, G. K. C., Jarosch, A. H., Anslow, F. S., Radić, V. & Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. Geosci. 8, 372–377 (2015).

    Article  Google Scholar 

  13. Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    Article  Google Scholar 

  14. Immerzeel, W. W., Beek, L. P. Hv, Konz, M., Shrestha, A. B. & Bierkens, M. F. P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 110, 721–736 (2012).

    Article  Google Scholar 

  15. Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C. & Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 9, 1105–1128 (2015).

    Article  Google Scholar 

  16. Azam, M. F. et al. Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol. 64, 61–74 (2018).

    Article  Google Scholar 

  17. Span, N. & Kuhn, M. Simulating annual glacier flow with a linear reservoir model. J. Geophys. Res. 108, 4313 (2003).

    Article  Google Scholar 

  18. Vincent, C., Soruco, A., Six, D. & Le Meur, E. Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentière, Mont Blanc area, France. Ann. Glaciol. 50, 73–79 (2009).

    Article  Google Scholar 

  19. Quincey, D. J., Luckman, A. & Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 55, 596–606 (2009).

    Article  Google Scholar 

  20. Azam, M. F. et al. From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri Glacier, western Himalaya, India. J. Glaciol. 58, 315–324 (2012).

    Article  Google Scholar 

  21. Sugiyama, S., Fukui, K., Fujita, K., Tone, K. & Yamaguchi, S. Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009. Ann. Glaciol. 54, 157–162 (2013).

    Article  Google Scholar 

  22. Neckel, N., Loibl, D. & Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 464, 95–102 (2017).

    Article  Google Scholar 

  23. Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

    Article  Google Scholar 

  24. Dehecq, A., Gourmelen, N. & Trouve, E. Deriving large-scale glacier velocities from a complete satellite archive: application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ. 162, 55–66 (2015).

    Article  Google Scholar 

  25. Pfeffer, W. T. et al. The randolph glacier inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537 (2014).

    Article  Google Scholar 

  26. Sevestre, H. & Benn, D. I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).

    Article  Google Scholar 

  27. Wang, Q., Yi, S. & Sun, W. Consistent interannual changes in glacier mass balance and their relationship with climate variation on the periphery of the Tibetan Plateau. Geophys. J. Int. 214, 573–582 (2018).

    Article  Google Scholar 

  28. Vincent, C. et al. Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7, 569–582 (2013).

    Article  Google Scholar 

  29. Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S. & Bolch, T. Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul–Spiti, western Himalaya. Clim. Change 148, 219–233 (2018).

    Article  Google Scholar 

  30. Sakai, A. & Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 7, 13717 (2017).

    Article  Google Scholar 

  31. Forsythe, N., Fowler, H. J., Li, X.-F., Blenkinsop, S. & Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Change 7, 664–670 (2017).

    Article  Google Scholar 

  32. Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Elsevier, Burlington, 2010).

  33. Weertman, J. On the sliding of glaciers. J. Glaciol. 3, 33–38 (1957).

    Article  Google Scholar 

  34. Bindschadler, R. The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol. 29, 3–19 (1983).

    Article  Google Scholar 

  35. Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 117, F04010 (2012).

    Article  Google Scholar 

  36. Farinotti, D. et al. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11, 949–970 (2017).

    Article  Google Scholar 

  37. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

  38. Rankl, M., Kienholz, C. & Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8, 977–989 (2014).

    Article  Google Scholar 

  39. Mukherjee, K. et al. Surge-type glaciers in the Tien Shan (Central Asia). Arct. Antarct. Alp. Res. 49, 147–171 (2017).

    Article  Google Scholar 

  40. Vincent, C. & Moreau, L. Sliding velocity fluctuations and subglacial hydrology over the last two decades on Argentière glacier, Mont Blanc area. J. Glaciol. 62, 805–815 (2016).

    Article  Google Scholar 

  41. Nienow, P. W. et al. Hydrological controls on diurnal ice flow variability in valley glaciers. J. Geophys. Res. 110, F04002 (2005).

    Article  Google Scholar 

  42. Copland, L., Sharp, M. J., Nienow, P. & Bingham, R. G. The distribution of basal motion beneath a High Arctic polythermal glacier. J. Glaciol. 49, 407–414 (2003).

    Article  Google Scholar 

  43. Kääb, A. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ. 94, 463–474 (2005).

    Article  Google Scholar 

  44. Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A 461, 609–627 (2005).

    Article  Google Scholar 

  45. Scherler, D., Leprince, S. & Strecker, M. R. Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens. Environ. 112, 3806–3819 (2008).

    Article  Google Scholar 

  46. Stein, A. N., Huertas, A. & Matthies, L. Attenuating stereo pixel-locking via affine window adaptation. In Proc. IEEE International Conference on Robotics and Automation ICRA 2006 914–921 (IEEE, 2006).

  47. Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692–695 (2015).

    Article  Google Scholar 

  48. Mouginot, J. & Rignot, E. Ice motion of the Patagonian Icefields of South America: 1984–2014. Geophys. Res. Lett. 42, 1441–1449 (2015).

    Article  Google Scholar 

  49. Gudbjartsson, H. & Patz, S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995).

    Article  Google Scholar 

  50. MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).

    Article  Google Scholar 

  51. Glen, J. W. The creep of polycrystalline ice. Proc. R. Soc. A 228, 519–538 (1955).

    Article  Google Scholar 

  52. Kienholz, C., Rich, J. L., Arendt, A. A. & Hock, R. A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere 8, 503–519 (2014).

    Article  Google Scholar 

  53. Kamb, B. & Echelmeyer, K. A. Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol. 32, 267–284 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Huss for providing the thickness and centre flow line data, J. Gardelle, T. Bolch, M. Rankl and H. Sevestre for providing data from their surge-inventory as well as glacier and basin outlines. We thank A. Rowan for comments and suggestions that greatly improved the quality of the paper. Initial research was conducted during A.D.’s graduate programme, with a doctoral fellowship from the Centre National d’Etude Spatial (CNES) and from the Savoie region. N.G. and A.D. were supported by funding from the European Space Agency Dragon 3 programme. E.B. acknowledges support from the French Space Agency (CNES). A.S.G. and A.D. were supported by funding from the NASA Cryosphere and MEaSUREs Programs and research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

A.D., N.G. and A.S.G. designed the study. A.S.G. generated the velocity fields. A.D. conducted the analysis with A.S.G and N.G. providing input. A.D. developed the model with D.G. and P.W.N. providing input. F.B. provided the elevation change data. All authors interpreted the results. A.D. led the writing of the paper and all co-authors contributed to it.

Corresponding author

Correspondence to Amaury Dehecq.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Supplementary Discussion and Supplementary Figures.

Supplementary Data Set

List of surging glaciers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehecq, A., Gourmelen, N., Gardner, A.S. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geosci 12, 22–27 (2019). https://doi.org/10.1038/s41561-018-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0271-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing