Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release

An Author Correction to this article was published on 21 November 2018

This article has been updated

Abstract

Emission budgets are defined as the cumulative amount of anthropogenic CO2 emission compatible with a global temperature-change target. The simplicity of the concept has made it attractive to policy-makers, yet it relies on a linear approximation of the global carbon–climate system’s response to anthropogenic CO2 emissions. Here we investigate how emission budgets are impacted by the inclusion of CO2 and CH4 emissions caused by permafrost thaw, a non-linear and tipping process of the Earth system. We use the compact Earth system model OSCAR v2.2.1, in which parameterizations of permafrost thaw, soil organic matter decomposition and CO2 and CH4 emission were introduced based on four complex land surface models that specifically represent high-latitude processes. We found that permafrost carbon release makes emission budgets path dependent (that is, budgets also depend on the pathway followed to reach the target). The median remaining budget for the 2 °C target reduces by 8% (1–25%) if the target is avoided and net negative emissions prove feasible, by 13% (2–34%) if they do not prove feasible, by 16% (3–44%) if the target is overshot by 0.5 °C and by 25% (5–63%) if it is overshot by 1 °C. (Uncertainties are the minimum-to-maximum range across the permafrost models and scenarios.) For the 1.5 °C target, reductions in the median remaining budget range from ~10% to more than 100%. We conclude that the world is closer to exceeding the budget for the long-term target of the Paris Climate Agreement than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the three budget-calculation approaches used in this study.
Fig. 2: Change in emission budgets caused by permafrost carbon release.
Fig. 3: Path dependency of the permafrost-induced budget reductions.
Fig. 4: Contribution of CH4 released by permafrost thaw to the budget reductions.

Similar content being viewed by others

Data availability

RCP scenarios are available at http://www.pik-potsdam.de/~mmalte/rcps/. The data that support the findings of this study are available from the corresponding author upon request.

Change history

  • 21 November 2018

    In the version of this Article originally published, data given for total exceedance budgets of CO2 for 1.5 °C and 2 °C targets were incorrect in the main text, although the correct values were given in Supplementary Table 1. These errors also resulted in an incorrect estimation of the percentage difference between the authors’ results and estimates by the IPCC. These errors have now been corrected in the online versions.

References

  1. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  Google Scholar 

  2. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  Google Scholar 

  3. Steinacher, M., Joos, F. & Stocker, T. F. Allowable carbon emissions lowered by multiple climate targets. Nature 499, 197–201 (2013).

    Article  Google Scholar 

  4. Allen, M. R. & Stocker, T. F. Impact of delay in reducing carbon dioxide emissions. Nat. Clim. Change 4, 23–26 (2014).

    Article  Google Scholar 

  5. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

    Article  Google Scholar 

  6. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  7. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Article  Google Scholar 

  8. Schurer, A. P. et al. Interpretations of the Paris climate target. Nat. Geosci. 11, 220–221 (2018).

    Article  Google Scholar 

  9. Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    Article  Google Scholar 

  10. Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Article  Google Scholar 

  11. Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011).

    Article  Google Scholar 

  12. MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

    Article  Google Scholar 

  13. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Article  Google Scholar 

  14. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  15. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  16. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  Google Scholar 

  17. Zickfeld, K., Arora, V. K. & Gillet, N. P. Is the climate response to CO2 emissions path dependent?. Geophys. Res. Lett. 39, L05703 (2012).

    Article  Google Scholar 

  18. Gasser, T. et al. The compact Earth system model OSCARv2.2: description and first results. Geosci. Model Dev. 10, 271–319 (2017).

    Article  Google Scholar 

  19. Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).

    Article  Google Scholar 

  20. Burke, E. J., Chadburn, S. E., & Ekici, A. A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions. Geosci. Model Dev. 10, 959–975 (2017).

    Article  Google Scholar 

  21. Burke, E. J. et al. Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences 14, 3051–3066 (2017).

    Article  Google Scholar 

  22. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

    Article  Google Scholar 

  23. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  Google Scholar 

  24. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357–373 (2001).

    Article  Google Scholar 

  25. Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    Article  Google Scholar 

  26. MacDougall, A. H., & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).

    Article  Google Scholar 

  27. Burke, E. J., Chadburn, S. E., Huntingford, C. & Jones, C. D. CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C. Environ. Res. Lett. 13, 024024 (2018).

    Article  Google Scholar 

  28. Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 7958 (2015).

    Article  Google Scholar 

  29. Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11, 055006 (2016).

    Article  Google Scholar 

  30. Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).

    Article  Google Scholar 

  31. Voigt, C. et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc. Natl Acad. Sci. USA 114, 6238–6243 (2017).

    Article  Google Scholar 

  32. Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).

    Article  Google Scholar 

  33. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).

    Article  Google Scholar 

  34. Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article  Google Scholar 

  35. Nzotungicimpaye, C.-M. & Zickfeld, K. The contribution from methane to the permafrost carbon feedback. Curr. Clim. Change Rep. 3, 58–68 (2017).

    Article  Google Scholar 

  36. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8, 659–740 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  37. Pierrehumbert, R. T. Short-lived climate pollution. Annu. Rev. Earth. Planet. Sci. 42, 341–379 (2014).

    Article  Google Scholar 

  38. Shine, K. P., Allan, R. P., Collins, W. J., & Fuglestvedt, J. S. Metrics for linking emissions of gases and aerosols to global precipitation changes. Earth Syst. Dynam 6, 525–540 (2015).

    Article  Google Scholar 

  39. Gasser, T. et al. Accounting for the climate–carbon feedback in emission metrics. Earth Syst. Dynam 8, 235–253 (2017).

    Article  Google Scholar 

  40. Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article  Google Scholar 

  41. Kunreuther, H. et al. Risk management and climate change. Nat. Clim. Change 3, 447–450 (2013).

    Article  Google Scholar 

  42. Hall, J. W. et al. Robust climate policies under uncertainty: a comparison of robust decision making and info-gap methods. Risk Anal. 32, 1657–1672 (2012).

    Article  Google Scholar 

  43. Hallegatte, S. Strategies to adapt to an uncertain climate change. Global Environ. Change 19, 240–247 (2009).

    Article  Google Scholar 

  44. Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    Article  Google Scholar 

  45. Quilcaille, Y. et al. Uncertainty in projected climate change arising from uncertain fossil-fuel emission factors. Environ. Res. Lett. 13, 044017 (2018).

    Article  Google Scholar 

  46. Rogelj, J. et al. Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proc. Natl Acad. Sci. USA 111, 16325–16330 (2014).

    Article  Google Scholar 

  47. Shindell, D. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183–189 (2012).

    Article  Google Scholar 

  48. Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

    Article  Google Scholar 

  49. Schneider von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

    Article  Google Scholar 

  50. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  51. Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Clim. 26, 5289–5314 (2013).

    Article  Google Scholar 

  52. Joos, F. et al. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B 48, 394–417 (1996).

    Article  Google Scholar 

  53. Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Clim. 26, 1841–1857 (2013).

    Article  Google Scholar 

  54. Holmes, C. D., Prather, M. J., Søvde, O. A., & Myhre, G. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmos. Chem. Phys 13, 285–302 (2013).

    Article  Google Scholar 

  55. Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clim. 26, 4398–4413 (2013).

    Article  Google Scholar 

  56. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article  Google Scholar 

  57. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Article  Google Scholar 

  58. Tuomi, M., Vanhala, P., Karhu, K., Fritze, H. & Liski, J. Heterotrophic soil respiration—comparison of different models describing its temperature dependence. Ecol. Model. 211, 182–190 (2008).

    Article  Google Scholar 

  59. Raupach, M. R. et al. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus B 63, 145–164 (2011).

    Article  Google Scholar 

  60. Brovkin, V. et al. Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J. Adv. Model. Earth Syst. 5, 48–57 (2013).

    Article  Google Scholar 

  61. Schneck, R., Reick, C. H. & Raddatz, T. Land contribution to natural CO2 variability on time scales of centuries. J. Adv. Model. Earth Syst, 5, 354–365 (2013).

    Article  Google Scholar 

  62. Hagemann, S. & Stacke, T. Impact of the soil hydrology scheme on simulated soil moisture memory. Clim. Dynam. 44, 1731–1750 (2015).

    Article  Google Scholar 

  63. Ekici, A. et al. Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geosci. Model Dev 7, 631–647 (2014).

    Article  Google Scholar 

  64. Goll, D. S. et al. Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization. Global. Biogeochem. Cycles 29, 1511–1523 (2015).

    Article  Google Scholar 

  65. Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. H. MacDougall for sharing data and O. Boucher for data used in Supplementary Fig. 6. This work is part of the European Research Council Synergy project ‘Imbalance-P’ (grant no. ERC-2013-SyG-610028). Simulations with OSCAR were carried out on the IPSL Prodiguer-Ciclad facility, which is supported by CNRS, UPMC and Labex L-IPSL, and funded by the ANR (grant no. ANR-10-LABX-0018) and the European FP7 IS-ENES2 project (grant no. 312979). E.J.B. was supported by PAGE21 (EU project no. GA282700), CRESCENDO (EU project no. 641816) and the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). A.E. was also supported by PAGE21.

Author information

Authors and Affiliations

Authors

Contributions

T.G. designed the study. T.G. developed the permafrost emulator with inputs from P.C. and M.K. T.K. provided JSBACH data. Y.H., D.Z. and P.C. provided ORCHIDEE data. E.J.B. and A.E. provided JULES data. T.G. and M.K. set up the simulations with OSCAR, processed the outputs and created the figures. T.G., M.K., P.C. and M.O. discussed the preliminary results. T.G. wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to T. Gasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Tables 1–5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasser, T., Kechiar, M., Ciais, P. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nature Geosci 11, 830–835 (2018). https://doi.org/10.1038/s41561-018-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0227-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing