Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations

Abstract

During the last deglaciation (19,000–9,000 years ago), atmospheric CO2 increased by about 80 ppm. Understanding the mechanisms responsible for this change is a central theme of palaeoclimatology, relevant for predicting future CO2 transfers in a warming world. Deglacial CO2 rise hypothetically tapped an accumulated deep Pacific carbon reservoir, but the processes remain elusive as they are underconstrained by existing tracers. Here we report high-resolution authigenic neodymium isotope data in North Pacific sediment cores and infer abyssal Pacific overturning weaker than today during the Last Glacial Maximum but intermittently stronger during steps of deglacial CO2 rise. Radiocarbon evidence suggestive of relatively ‘old’ deglacial deep Pacific water is reinterpreted here as an increase in preformed 14C age of subsurface waters sourced near Antarctica, consistent with movement of aged carbon out of the deep ocean and release of CO2 to the atmosphere during the abyssal flushing events. The timing of neodymium isotope changes suggests that deglacial acceleration of Pacific abyssal circulation tracked Southern Hemisphere warming, sea-ice retreat and increase of mean ocean temperature. The inferred magnitude of circulation changes is consistent with deep Pacific flushing as a significant, and perhaps dominant, control of the deglacial rise of atmospheric CO2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study sites and Pacific circulation.
Fig. 2: Deglacial North Pacific εNd, compared with global climate records.
Fig. 3: Transient simulations of North Pacific circulation tracers.
Fig. 4: Transient simulations using Antarctic climate forcings.
Fig. 5: Conceptual models of LGM to Holocene circulation evolution in the Pacific.

Similar content being viewed by others

References

  1. Sikes, E. L., Allen, K. A. & Lund, D. C. Enhanced δ13C and δ18O differences between the South Atlantic and South Pacific during the last glaciation: the deep gateway hypothesis. Paleoceanography 32, 1000–1017 (2017).

    Google Scholar 

  2. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Google Scholar 

  3. Wunsch, C. Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum. Quat. Sci. Rev. 22, 371–385 (2003).

    Google Scholar 

  4. Jansen, M. F. & Nadeau, L.-P. The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr. 46, 3455–3470 (2016).

    Google Scholar 

  5. Marchitto, T. M., Lehman, S. J., Ortiz, J. D., Flückiger, J. & van Geen, A. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, 1456–1459 (2007).

    Google Scholar 

  6. Broecker, W. et al. Radiocarbon age of late glacial deep water from the equatorial Pacific. Paleoceanography 22, PA2206 (2007).

    Google Scholar 

  7. Okazaki, Y. et al. Deepwater formation in the North Pacific during the Last Glacial Termination. Science 329, 200–204 (2010).

    Google Scholar 

  8. Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

    Google Scholar 

  9. Davies-Walczak, M. et al. Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth Planet. Sci. Lett. 397, 57–66 (2014).

    Google Scholar 

  10. Rose, K. A. et al. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature 466, 1093–1097 (2010).

    Google Scholar 

  11. Cook, M. S. & Keigwin, L. D. Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography 30, 174–195 (2015).

    Google Scholar 

  12. Lund, D. C., Mix, A. C. & Southon, J. Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation. Nat. Geosci. 4, 771–774 (2011).

    Google Scholar 

  13. Sikes, E. L., Cook, M. S. & Guilderson, T. P. Reduced deep ocean ventilation in the Southern Pacific Ocean during the last glaciation persisted into the deglaciation. Earth Planet. Sci. Lett. 438, 130–138 (2016).

    Google Scholar 

  14. Jones, D. C., Ito, T., Takano, Y. & Hsu, W.-C. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 28, 1163–1178 (2014).

    Google Scholar 

  15. Koeve, W., Wagner, H., Kähler, P. & Oschlies, A. 14C-age tracers in global ocean circulation models. Geosci. Model Dev. 8, 2079–2094 (2015).

    Google Scholar 

  16. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    Google Scholar 

  17. Sarnthein, M., Balmer, S., Grootes, P. M. & Mudelsee, M. Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radiocarbon 57, 129–151 (2015).

    Google Scholar 

  18. Lacan, F. & Jeandel, C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface. Earth Planet. Sci. Lett. 232, 245–257 (2005).

    Google Scholar 

  19. Abbott, A. N., Haley, B. A. & McManus, J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature. Geology 43, 1035–1035 (2015).

    Google Scholar 

  20. Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).

    Google Scholar 

  21. Haley, B. A., Du, J., Abbott, A.N. & McManus, J. The impact of benthic processes on rare earth element and neodymium isotope distributions in the oceans. Front. Mar. Sci. 4, 426 (2017).

    Google Scholar 

  22. Gebbie, G. & Huybers, P. The mean age of ocean waters inferred from radiocarbon observations: sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr. 42, 291–305 (2012).

    Google Scholar 

  23. Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data–model comparison study. Paleoceanography 32, 2–17 (2016).

    Google Scholar 

  24. Cuffey, K. M. et al. Deglacial temperature history of West Antarctica. Proc. Natl Acad. Sci. USA 113, 14249–14254 (2016).

    Google Scholar 

  25. WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013).

    Google Scholar 

  26. Clark, P. U., McCabe, A. M., Mix, A. C. & Weaver, A. J. Rapid rise of sea level 19,000 years ago and its global implications. Science 304, 1141–1144 (2004).

    Google Scholar 

  27. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Google Scholar 

  28. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Google Scholar 

  29. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39 (2018).

    Google Scholar 

  30. Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).

    Google Scholar 

  31. Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Google Scholar 

  32. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Google Scholar 

  33. Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).

    Google Scholar 

  34. Talley, L. D. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog. Oceanogr. 78, 257–303 (2008).

    Google Scholar 

  35. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 21, 80–97 (2013).

    Google Scholar 

  36. Menviel, L., England, M. H., Meissner, K. J., Mouchet, A. & Yu, J. Atlantic–Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography 29, 58–70 (2014).

    Google Scholar 

  37. Lauderdale, J. M., Williams, R. G., Munday, D. R. & Marshall, D. P. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales. Clim. Dyn. 48, 1611–1631 (2017).

    Google Scholar 

  38. Menviel, L., Mouchet, A., Meissner, K. J., Joos, F. & England, M. H. Impact of oceanic circulation changes on atmospheric δ 13CO2. Glob. Biogeochem. Cycles 29, 1944–1961 (2015).

    Google Scholar 

  39. Gray, W. R. et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nat. Geosci. 11, 340–344 (2018).

    Google Scholar 

  40. Zhao, N., Marchal, O., Keigwin, L., Amrhein, D. & Gebbie, G. A synthesis of deglacial deep-sea radiocarbon records and their (in)consistency with modern ocean ventilation. Paleoceanogr. Paleoclimatology 33, 128–151 (2018).

    Google Scholar 

  41. de la Fuente, M., Skinner, L., Calvo, E., Pelejero, C. & Cacho, I. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nat. Commun. 6, 7420 (2015).

    Google Scholar 

  42. Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

    Google Scholar 

  43. Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29, 645–667 (2014).

    Google Scholar 

  44. Friedrich, T., Timmermann, A., Stichel, T. & Pahnke, K. Ocean circulation reconstructions from εNd: a model-based feasibility study. Paleoceanography 29, 1003–1023 (2014).

    Google Scholar 

  45. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Google Scholar 

  46. Marzocchi, A. & Jansen, M. F. Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett. 44, 2017GL073936 (2017).

    Google Scholar 

  47. Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J. & Schlosser, P. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Sci 10, 17–28 (2014).

    Google Scholar 

  48. Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

    Google Scholar 

  49. Adkins, J. F., Ingersoll, A. P. & Pasquero, C. Rapid Climate Change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev. 24, 581–594 (2005).

    Google Scholar 

  50. Lund, D. C. et al. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations. Science 351, 478–482 (2016).

    Google Scholar 

  51. Adkins, J. F., McIntyre, K., & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Google Scholar 

  52. Zahn, R. & Mix, A. C. Benthic foraminiferal δ18O in the ocean’s temperature–salinity–density field: constraints on Ice Age thermohaline circulation. Paleoceanography 6, 1–20 (1991).

    Google Scholar 

  53. Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).

    Google Scholar 

  54. Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. R. Soc. A 372, 20130296 (2014).

    Google Scholar 

  55. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Google Scholar 

  56. Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Google Scholar 

  57. Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Google Scholar 

  58. Howe, J. N. W. et al. Antarctic intermediate water circulation in the South Atlantic over the past 25,000 years. Paleoceanography 31, 1302–1314 (2016).

    Google Scholar 

  59. Wilson, D. J., Piotrowski, A. M., Galy, A. & Clegg, J. A. Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography. Geochim. Cosmochim. Acta 109, 197–221 (2013).

    Google Scholar 

  60. Blaser, P. et al. Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chem. Geol. 439, 189–204 (2016).

    Google Scholar 

  61. Molina-Kescher, M., Frank, M. & Hathorne, E. Nd and Sr isotope compositions of different phases of surface sediments in the South Pacific: extraction of seawater signatures, boundary exchange, and detrital/dust provenance. Geochem. Geophys. Geosystems 15, 3502–3520 (2014).

    Google Scholar 

  62. Wu, Q. et al. Neodymium isotopic composition in foraminifera and authigenic phases of the South China Sea sediments: implications for the hydrology of the North Pacific Ocean over the past 25 kyr. Geochem. Geophys. Geosystems 16, 3883–3904 (2015).

    Google Scholar 

  63. Tachikawa, K. et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data. Chem. Geol. 457, 131–148 (2017).

    Google Scholar 

  64. Muratli, J. M., McManus, J., Mix, A. & Chase, Z. Dissolution of fluoride complexes following microwave-assisted hydrofluoric acid digestion of marine sediments. Talanta 89, 195–200 (2012).

    Google Scholar 

  65. O’Nions, R. K., Carter, S. R., Evensen, N. M. & Hamilton, P. J. Geochemical and cosmochemical applications of Nd isotope analysis. Annu. Rev. Earth Planet. Sci. 7, 11–38 (1979).

    Google Scholar 

  66. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Google Scholar 

  67. Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosystems 7, Q08006 (2006).

    Google Scholar 

  68. Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Google Scholar 

  69. Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).

    Google Scholar 

  70. Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 399–418 (2008).

    Google Scholar 

  71. Abbott, A. N., Haley, B. A., McManus, J. & Reimers, C. E. The sedimentary flux of dissolved rare earth elements to the ocean. Geochim. Cosmochim. Acta 154, 186–200 (2015).

    Google Scholar 

  72. Tachikawa, K., Athias, V. & Jeandel, C. Neodymium budget in the modern ocean and paleo-oceanographic implications. J. Geophys. Res. Oceans 108, 3254 (2003).

    Google Scholar 

  73. Arsouze, T., Dutay, J.-C., Lacan, F. & Jeandel, C. Reconstructing the Nd oceanic cycle using a coupled dynamical–biogeochemical model. Biogeosciences 6, 2829–2846 (2009).

    Google Scholar 

  74. Rempfer, J., Stocker, T. F., Joos, F., Dutay, J.-C. & Siddall, M. Modelling Nd-isotopes with a coarse resolution ocean circulation model: sensitivities to model parameters and source/sink distributions. Geochim. Cosmochim. Acta 75, 5927–5950 (2011).

    Google Scholar 

  75. de Lavergne, C., Madec, G., Roquet, F., Holmes, R. M. & McDougall, T. J. Abyssal ocean overturning shaped by seafloor distribution. Nature 551, 181–186 (2017).

    Google Scholar 

  76. Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M. & Campin, J.-M. Turning ocean mixing upside down. J. Phys. Oceanogr. 46, 2239–2261 (2016).

    Google Scholar 

  77. de Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. J. G. & Naveira Garabato, A. C. On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr. 46, 635–661 (2015).

    Google Scholar 

  78. Abbott, A. N., Haley, B. A. & McManus, J. The impact of sedimentary coatings on the diagenetic Nd flux. Earth Planet. Sci. Lett. 449, 217–227 (2016).

    Google Scholar 

  79. Jones, K. M., Khatiwala, S. P., Goldstein, S. L., Hemming, S. R. & van de Flierdt, T. Modeling the distribution of Nd isotopes in the oceans using an ocean general circulation model. Earth Planet. Sci. Lett. 272, 610–619 (2008).

    Google Scholar 

  80. Howe, J. N. W., Piotrowski, A. M. & Rennie, V. C. F. Abyssal origin for the early Holocene pulse of unradiogenic neodymium isotopes in Atlantic seawater. Geology 44, 831–834 (2016).

    Google Scholar 

  81. Roberts, N. L. & Piotrowski, A. M. Radiogenic Nd isotope labeling of the northern NE Atlantic during MIS 2. Earth Planet. Sci. Lett. 423, 125–133 (2015).

    Google Scholar 

  82. Talley, L. D. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33, 530–560 (2003).

    Google Scholar 

  83. Lambelet, M. et al. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta 177, 1–29 (2016).

    Google Scholar 

  84. Praetorius, S. et al. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth Planet. Sci. Lett. 452, 79–89 (2016).

    Google Scholar 

  85. Menard, H. W. & Smith, S. M. Hypsometry of ocean basin provinces. J. Geophys. Res. 71, 4305–4325 (1966).

    Google Scholar 

  86. McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

    Google Scholar 

  87. Ziegler, C. L., Murray, R. W., Hovan, S. A. & Rea, D. K. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean. Earth Planet. Sci. Lett. 254, 416–432 (2007).

    Google Scholar 

  88. Dunlea, A. G. et al. Dust, volcanic ash, and the evolution of the South Pacific Gyre through the Cenozoic. Paleoceanography 30, 1078–1099 (2015).

    Google Scholar 

  89. Hu, R. et al. Neodymium isotopic evidence for linked changes in Southeast Atlantic and Southwest Pacific circulation over the last 200 kyr. Earth Planet. Sci. Lett. 455, 106–114 (2016).

    Google Scholar 

  90. Noble, T. L., Piotrowski, A. M. & McCave, I. N. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific. Earth Planet. Sci. Lett. 384, 27–36 (2013).

    Google Scholar 

  91. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science 337, 704–709 (2012).

    Google Scholar 

  92. Molina-Kescher, M. et al. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods. Paleoceanography 31, 651–668 (2016).

    Google Scholar 

Download references

Acknowledgements

We thank J. Muratli for assistance with bulk sediment digestion and A. Ungerer for assistance with elemental and isotope analyses at the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University. We thank the OSU Marine and Geology Repository and the International Ocean Discover Program for providing sediment samples. IODP-U1418 samples were provided by C. Belanger. This study was supported by NSF grant MGG-1357529 (A.C.M. and B.A.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.D., B.A.H. and A.C.M. designed this study. J.D. generated neodymium isotope data with assistance from B.A.H. and created the box model with assistance from A.C.M. J.D. wrote the initial manuscript with extensive input from A.C.M. and B.A.H. M.H.W. and S.K.P. assisted with the chronology and the interpretation of radiocarbon data. All authors contributed to the conceptual ideas and provided comments on the manuscript.

Corresponding author

Correspondence to Jianghui Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, methods, discussion and tables.

Supplementary Dataset

Neodymium isotope data and radiocarbon dates from sediment cores used in study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Haley, B.A., Mix, A.C. et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nature Geosci 11, 749–755 (2018). https://doi.org/10.1038/s41561-018-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0205-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing