Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetite authigenesis and the warming of early Mars

Abstract

The Curiosity rover has documented lacustrine sediments at Gale Crater, but how liquid water became physically stable on the early Martian surface is a matter of significant debate. To constrain the composition of the early Martian atmosphere during sediment deposition, we experimentally investigated the nucleation and growth kinetics of authigenic Fe-minerals in Gale Crater mudstones. Experiments show that pH variations within anoxic basaltic waters trigger a series of mineral transformations that rapidly generate magnetite and H2(aq). Magnetite continues to form through this mechanism despite high partial pressure of carbon dioxide (pCO2) and supersaturation with respect to Fe-carbonate minerals. Reactive transport simulations that incorporate these experimental data show that groundwater infiltration into a lake equilibrated with a CO2-rich atmosphere can trigger the production of both magnetite and H2(aq) in the mudstones. H2(aq), generated at concentrations that would readily exsolve from solution, is capable of increasing annual mean surface temperatures above freezing in CO2-dominated atmospheres. We therefore suggest that magnetite authigenesis could have provided a short-term feedback for stabilizing liquid water, as well as a principal feedstock for biologically relevant chemical reactions, at the early Martian surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anoxic precipitation experiment with Mg2+, Fe2+ and SiO2(aq)-bearing water.
Fig. 2: Anoxic precipitation experiments as a function of pH and dissolved CO2.
Fig. 3: Groundwater–lake water mixing to form magnetite and H2(aq).
Fig. 4: Globally averaged authigenic H2 production on early Mars.

Similar content being viewed by others

References

  1. Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, 1242777 (2014).

    Article  Google Scholar 

  2. Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575 (2015).

  3. Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 1243480 (2014).

    Article  Google Scholar 

  4. McLennan, S. M. et al. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars. Science 343, 1244734 (2014).

    Article  Google Scholar 

  5. Hurowitz, J. A. et al. Redox stratification of an ancient lake in Gale Crater, Mars. Science 356, eaah6849 (2017).

    Article  Google Scholar 

  6. Ming, D. W. et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, 1245267 (2014).

    Article  Google Scholar 

  7. Bristow, T. F. et al. The origin and implications of clay minerals from Yellowknife Bay, Gale Crater, Mars. Am. Mineral. 100, 824–836 (2015).

    Article  Google Scholar 

  8. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  Google Scholar 

  9. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  Google Scholar 

  10. Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  Google Scholar 

  11. Postawko, S. E. & Kuhn, W. R. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J. Geophys. Res. Solid Earth 91, 431–438 (1986).

    Article  Google Scholar 

  12. Halevy, I., Zuber, M. T. & Schrag, D. P. A sulfur dioxide climate feedback on early Mars. Science 318, 1903–1907 (2007).

    Article  Google Scholar 

  13. Halevy, I. & Head, J. W. III Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

    Article  Google Scholar 

  14. Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate. J. Geophys. Res. Planets 118, 560–576 (2013).

    Article  Google Scholar 

  15. Kerber, L., Forget, F. & Wordsworth, R. Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015).

    Article  Google Scholar 

  16. Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2013).

    Article  Google Scholar 

  17. Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    Article  Google Scholar 

  18. Hirschmann, M. M. & Withers, A. C. Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147–155 (2008).

    Article  Google Scholar 

  19. Chassefiere, E., Langlais, B., Quesnel, Y. & Leblanc, F. The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res. Planets 118, 1123–1134 (2013).

    Article  Google Scholar 

  20. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L0621 (2010).

    Article  Google Scholar 

  21. Syverson, D. D., Tutolo, B. M., Borrok, D. M. & Seyfried, W. E. Serpentinization of olivine at 300°C and 500 bars: an experimental study examining the role of silica on the reaction path and oxidation state of iron. Chem. Geol. 475, 122–134 (2017).

    Article  Google Scholar 

  22. Tutolo, B. M., Luhmann, A. J., Tosca, N. J. & Seyfried, W. E. Serpentinization as a reactive transport process: the brucite silicification reaction. Earth Planet. Sci. Lett. 484, 385–395 (2018).

    Article  Google Scholar 

  23. Dideriksen, K. et al. Formation and transformation of a short range ordered iron carbonate precursor. Geochim. Cosmochim. Acta 164, 94–109 (2015).

    Article  Google Scholar 

  24. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2016).

    Article  Google Scholar 

  25. Bristow, T. F. et al. Low Hesperian P CO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl Acad. Sci. USA. 114, 2166–2170 (2017).

    Article  Google Scholar 

  26. Sel, O., Radha, A. V., Dideriksen, K. & Navrotsky, A. Amorphous iron (ii) carbonate: crystallization energetics and comparison to other carbonate minerals related to CO2 sequestration. Geochim. Cosmochim. Acta 87, 61–68 (2012).

    Article  Google Scholar 

  27. Azoulay, I., Rémazeilles, C. & Refait, P. Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media. Corros. Sci. 58, 229–236 (2012).

    Article  Google Scholar 

  28. Horvath, D. G. & Andrews-Hanna, J. C. Reconstructing the past climate at Gale Crater, Mars, from hydrological modeling of late-stage lakes. Geophys. Res. Lett. 44, 8196–8204 (2017).

    Article  Google Scholar 

  29. Gislason, S. R. & Eugster, H. P. Meteoric water-basalt interactions. II: a field study in NE Iceland. Geochim. Cosmochim. Acta. 51, 2841–2855 (1987).

    Article  Google Scholar 

  30. Stefansson, A., Gislason, S. R. & Arnorsson, S. Dissolution of primary minerals in natural waters II. Mineral saturation state. Chem. Geol. 172, 251–276 (2001).

    Article  Google Scholar 

  31. Arnórsson, S., Gunnarsson, I., Stefánsson, A., Andrésdóttir, A. & Sveinbjörnsdóttir, E. Major element chemistry of surface- and ground waters in basaltic terrain, N-Iceland: I. primary mineral saturation. Geochim. Cosmochim. Acta 66, 4015–4046 (2002).

    Article  Google Scholar 

  32. Barnes, I. & O’Neil, J. R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Geol. Soc. Am. Bull. 80, 1947–1960 (1969).

    Article  Google Scholar 

  33. Morris, R. V. et al. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale Crater. Proc. Natl Acad. Sci. USA 113, 7071–7076 (2016).

    Article  Google Scholar 

  34. Rampe, E. B. et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray Formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017).

    Article  Google Scholar 

  35. Renaut, R. W., Tiercelin, J. J. & Owen, R. B. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria Basin, Kenya Rift Valley. Geol. Soc. Spec. Publ. 25, 159–175 (1986).

    Article  Google Scholar 

  36. Stack, M. et al. Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay Formation, Gale Crater, Mars. J. Geophys. Res. Planets 119, 1637–1664 (2014).

    Article  Google Scholar 

  37. Wordsworth, R. et al. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  38. Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    Article  Google Scholar 

  39. Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    Article  Google Scholar 

  40. Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

    Article  Google Scholar 

  41. Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A. & Leverington, D. W. A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296, 2209–2212 (2002).

    Article  Google Scholar 

  42. Andrews-Hanna, J. C., Zuber, M. T., Arvidson, R. E. & Wiseman, S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res 115, E06002 (2010).

    Article  Google Scholar 

  43. Andrews-Hanna, J. C. & Lewis, K. W. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. 116, E02007 (2011).

    Article  Google Scholar 

  44. Abelson, P. H. Chemical events on the primitive Earth. Proc. Natl Acad. Sci. USA 55, 1365–1372 (1966).

    Article  Google Scholar 

  45. Miller, S. L. A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953).

    Article  Google Scholar 

  46. Canfield, D. E., Kristensen, E. & Thamdrup, B. Aquatic Geomicrobiology (Elsevier, Amsterdam, 2005).

  47. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta Proteins Proteom. 1784, 1873–1898 (2008).

    Article  Google Scholar 

  48. Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol. 8, e1002455 (2012).

    Article  Google Scholar 

  49. Thomson, B. J. et al. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011).

    Article  Google Scholar 

  50. Le Deit, L. et al. Sequence of infilling events in Gale Crater, Mars: results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 118, 2439–2473 (2013).

    Article  Google Scholar 

  51. Palucis, M. C. et al. The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. J. Geophys. Res. Planets 119, 705–728 (2014).

    Article  Google Scholar 

  52. Grant, J. A., Wilson, S. A., Mangold, N., Calef, F. & Grotzinger, J. P. The timing of alluvial activity in Gale Crater, Mars. Geophys. Res. Lett. 41, 1142–1149 (2014).

    Article  Google Scholar 

  53. Szabó, T., Domokos, G., Grotzinger, J. P. & Jerolmack, D. J. Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015).

    Article  Google Scholar 

  54. Williams, R. M. E. et al. Martian fluvial conglomerates at Gale Crater. Science 340, 1068–1072 (2013).

    Article  Google Scholar 

  55. Dehouck, E., McLennan, S. M., Meslin, P. & Cousin, A. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale Crater, Mars. J. Geophys. Res. Planets 119, 2640–2657 (2014).

    Article  Google Scholar 

  56. Bish, D. L. et al. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale Crater. Science 341, 1238932 (2013).

    Article  Google Scholar 

  57. Blake, D. F. et al. Curiosity at Gale Crater, Mars: characterization and analysis of the Rocknest sand shadow. Science 341, 1239505 (2013).

    Article  Google Scholar 

  58. Bethke, C. M. & Yeakel, S. The Geochemist’s Workbench: Release 11.0 (Aqueous Solutions LLC, 2017).

  59. Delany, J. M. & Lundeen, S. R. The LLNL Thermochemical Database -- Revised Data and File Format for the EQ3/6 Package. Technical Report UCID-21658 (LLNL, USDOE, 1991).

  60. Brantley, S. L., White, A. F. & Hodson, M. E. in Growth, Dissolution and Pattern Formation in Geosystems (eds Jamtveit, B. & Meakin, P.) 291–326 (Kluwer, Dordrecht, 1999).

  61. Brantley, S. L. & Conrad, C. F. in Kinetics of Water–Rock Interaction (eds Brantley, S.L., Kubicki, J. D. & White, A. F.) 1–37 (Springer, New York, 2008).

  62. Bandstra, J. Z. & Brantley, S. L. in Kinetics of Water–Rock Interaction (eds Brantley, S.L., Kubicki, J. D. & White, A. F.) 211–257 (Springer, New York, 2008).

  63. Tosca, N. J., McLennan, S. M., Lindsley, D. H. & Schoonen, A. A. Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited. J. Geophys. Res. Planets 109, E05003 (2004).

    Article  Google Scholar 

  64. Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of iron(ii) in water between pH 7.5 and 4.0. J. Chem. Soc. Dalton Trans. 7, 1441–1445 (1984).

    Article  Google Scholar 

  65. Butler, I. B., Schoonen, M. A. & Rickard, D. T. Removal of dissolved oxygen from water: a comparison of four common techniques. Talanta 41, 211–215 (1994).

    Article  Google Scholar 

  66. Loomis, W. F. Rapid microcolorimetric determination of dissolved oxygen. Anal. Chem. 26, 402–404 (1954).

    Article  Google Scholar 

  67. Kandegedara, A. & Rorabacher, D. B. Noncomplexing tertiary amines as “better” buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal. Chem. 71, 3140–4 (1999).

    Article  Google Scholar 

  68. Nordstrom, D. K. Thermochemical redox equilibria of ZoBell’s solution. Geochim. Cosmochim. Acta 41, 1835–1841 (1977).

    Article  Google Scholar 

  69. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  Google Scholar 

  70. Fleet, M. E. The structure of magnetite: symmetry of cubic spinels. J. Solid State Chem. 62, 75–82 (1986).

    Article  Google Scholar 

  71. Parise, J. B., Marshall, W. G., Smith, R. I., Lutz, H. D. & Möller, H. The nuclear and magnetic structure of white rust Fe(OH0.86D0.14)2. Am. Mineral. 85, 189–193 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. T. Pierrehumbert, A. Knoll and J. Grotzinger for enthusiasm and feedback. N.J.T acknowledges funding from Science and Technology Facilities Council grant ST/M004716/1. J.A.H. acknowledges funding from NASA grant NNX13AR09G. N.J.T. and J.A.H. thank Fondation des Treilles for support for a meeting that helped crystallize the research. We thank J. Catalano for comments that improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.J.T. and J.A.H. conceived the research, N.J.T., I.A.M.A. and A.A. performed the laboratory work, B.M.T. developed and executed the reactive transport calculations, and all authors analysed the data. N.J.T. wrote the paper with contributions from J.A.H., I.A.M.A and B.M.T.

Corresponding author

Correspondence to Nicholas J. Tosca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables, figures and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosca, N.J., Ahmed, I.A.M., Tutolo, B.M. et al. Magnetite authigenesis and the warming of early Mars. Nature Geosci 11, 635–639 (2018). https://doi.org/10.1038/s41561-018-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0203-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing