Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric

Abstract

Analysis of deep subduction-zone earthquakes, those at depths greater than 60 km, reveals the physical and chemical properties of a descending oceanic lithosphere at mantle depths. Over the past five decades, it has been observed that a large fraction of deep earthquakes has non-double-couple (non-DC) seismic radiation patterns. In contrast, shallow earthquakes tend to have DC radiation patterns due to mechanisms of shear faulting. These observations have been used to argue that deep earthquakes rupture differently from shallow earthquakes. Here we show that the observed global distribution of non-DC deep earthquakes could be caused by shear faulting mechanisms, but in a highly anisotropic laminated rock fabric that surrounds the deep earthquakes within subducted slabs. For intermediate-depth earthquakes (~60–300 km), we found a large shear-wave anisotropy of ~25%, possibly caused by laminated fabric or aligned melt pockets oriented parallel to the slab interface, which provides new supporting evidence for the metamorphic dehydration reactions in slabs. However, at deep-focus depths (>300 km), the putative metastable phase-change mechanism alone cannot explain the seismic anisotropy. Instead, our results and those from recent experiments suggest materials such as magnesite, or perhaps carbonatite melt, may play a role in generating deep-focus earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inverted TTI anisotropy symmetry axes (coloured arrowheads) with respect to slab geometry.
Fig. 2: Apparent non-DC events caused by shear dislocations in anisotropic media.
Fig. 3: Summary of inverted anisotropy parameters.
Fig. 4: Schematic diagram of the origin of anisotropy.

Similar content being viewed by others

References

  1. Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S.D. Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?J. Geophys. Res. Sol. Earth 108, 2029 (2003).

    Google Scholar 

  2. Frohlich, C. Deep Earthquakes (Cambridge Univ. Press, Cambridge, 2006).

  3. Houston, H. in Treatise on Geophysics 2nd edn, Vol. 4 (ed. Schubert, G.) 329–354 (Elsevier, Amsterdam, 2015).

  4. Julian, B. R., Miller, A. D. & Foulger, G. R. Non-double-couple earthquakes 1. Theory. Rev. Geophys. 36, 525–549 (1998).

    Article  Google Scholar 

  5. Knopoff, L. & Randall, M. J. Compensated linear–vector dipole—a possible mechanism for deep earthquakes. J. Geophys Res. 75, 4957-& (1970).

    Article  Google Scholar 

  6. Kuge, K. & Kawakatsu, H. Significance of nondouble couple components of deep and intermediate-depth earthquakes: implications from moment tensor inversions of long-period seismic waves. Phys. Earth Planet. Inter. 75, 243–266 (1993).

    Article  Google Scholar 

  7. Richardson, E. & Jordan, T. H. Low-frequency properties of intermediate-focus earthquakes. Bull. Seismol. Soc. Am. 92, 2434–2448 (2002).

    Article  Google Scholar 

  8. Kuge, K. & Lay, T. Data-dependent non-double-couple components of shallow earthquake source mechanisms—effects of wave-form inversion instability. Geophys Res Lett. 21, 9–12 (1994).

    Article  Google Scholar 

  9. Frohlich, C. Earthquakes with non-double-couple mechanisms. Science 264, 804–809 (1994).

    Article  Google Scholar 

  10. Evison, F. F. Earthquakes and faults. Bull. Seismol. Soc. Am. 53, 873–891 (1963).

    Google Scholar 

  11. Kirby, S. H. Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes. J. Geophys. Res. Sol. Earth 92, 13789–13800 (1987).

    Article  Google Scholar 

  12. Green, H. W. Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes. Proc. Natl Acad. Sci. USA 104, 9133–9138 (2007).

    Article  Google Scholar 

  13. Schubnel, A. et al. Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science 341, 1377–1380 (2013).

    Article  Google Scholar 

  14. Kawasaki, I. & Tanimoto, T. Radiation patterns of body waves due to the seismic dislocation occurring in an anisotropic source medium. Bull. Seismol. Soc. Am. 71, 37–50 (1981).

    Google Scholar 

  15. Vavrycuk, V. Inversion for anisotropy from non-double-couple components of moment tensors. J. Geophys. Res. Sol. Earth 109, B07306 (2004).

    Article  Google Scholar 

  16. Thomsen, L. Weak elastic anisotropy. Geophysics 51, 1954–1966 (1986).

    Article  Google Scholar 

  17. Dziewonski, A. M., Chou, T. A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).

    Article  Google Scholar 

  18. Aki, K. & Richards, P. G. Quantitative Seismology (University Science Books, Herndon, 2002).

  19. Leonard, M. Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull. Seismol. Soc. Am. 100, 1971–1988 (2010).

    Article  Google Scholar 

  20. Frohlich, C. & Davis, S. D. How well constrained are well-constrained T, B, and P axes in moment tensor catalogs? J. Geophys. Res. Sol. Earth 104, 4901–4910 (1999).

    Article  Google Scholar 

  21. Gudmundsson, Ó.& Sambridge, M. A regionalized upper mantle RUM seismic model. J. Geophys. Res. Sol. Earth 103, 7121–7136 (1998).

    Article  Google Scholar 

  22. Nowacki, A., Kendall, J. M., Wookey, J. & Pemberton, A. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosyst. 16, 764–784 (2015).

    Article  Google Scholar 

  23. Vinnik, L. P. & Kind, R. Ellipticity of teleseismic S-particle motion. Geophys. J. Int. 113, 165–174 (1993).

    Article  Google Scholar 

  24. Lynner, C. & Long, M. D. Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations. Geochem. Geophys. Geosyst. 15, 2262–2281 (2014).

    Article  Google Scholar 

  25. Long, M. D. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys. 51, 76–112 (2013).

    Article  Google Scholar 

  26. Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. Sol. Earth 120, 4278–4300 (2015).

    Article  Google Scholar 

  27. Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth Planet. Sci. Lett. 374, 132–144 (2013).

    Article  Google Scholar 

  28. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  29. Karato, S., Jung, H., Katayama, I. & Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95, (2008).

    Article  Google Scholar 

  30. Jung, H., Mo, W. & Green, H. W. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat. Geosci. 2, 73–77 (2009).

    Article  Google Scholar 

  31. Jung, H., Park, M., Jung, S. & Lee, J. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. J. Earth Sci. 21, 555–568 (2010).

    Article  Google Scholar 

  32. Mainprice, D. & Ildefonse, B. in Subduction Zone Geodynamics (eds Lallemand, S. & Funiciello, F.) 63–84 (Springer, Berlin, 2009).

  33. Yang, J., Mao, Z., Lin, J. F. & Prakapenka, V. B. Single-crystal elasticity of the deep-mantle magnesite at high pressure and temperature. Earth Planet. Sci. Lett. 392, 292–299 (2014).

    Article  Google Scholar 

  34. Brownlee, S. J., Hacker, B. R., Harlow, G. E. & Seward, G. Seismic signatures of a hydrated mantle wedge from antigorite crystal-preferred orientation (CPO). Earth Planet. Sci. Lett. 375, 395–407 (2013).

    Article  Google Scholar 

  35. Raleigh, C. B. & Paterson, M. S. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70, 3965–3985 (1965).

    Article  Google Scholar 

  36. Green, H. W., Chen, W. P. & Brudzinski, M. R. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467, 828–831 (2010).

    Article  Google Scholar 

  37. Bina, C. R. & Wood, B. J. Olivine–spinel transitions—experimental and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity. J. Geophys. Res. Sol. Earth 92, 4853–4866 (1987).

    Article  Google Scholar 

  38. Stagno, V. et al. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys. Res. Lett. 38, L19309 (2011).

  39. Holyoke, C. W., Kronenberg, A. K., Newman, J. & Ulrich, C. Rheology of magnesite. J. Geophys. Res. Sol. Earth 119, 6534–6557 (2014).

    Article  Google Scholar 

  40. Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article  Google Scholar 

  41. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Sol. Earth 118, 5920–5938 (2013).

    Article  Google Scholar 

  42. Weinberg, R. F., Veveakis, E. & Regenauer-Lieb, K. Compaction-driven melt segregation in migmatites. Geology 43, 471–474 (2015).

    Article  Google Scholar 

  43. Veveakis, E., Regenauer-Lieb, K. & Weinberg, R. F. Ductile compaction of partially molten rocks: the effect of non-linear viscous rheology on instability and segregation. Geophys. J. Int. 200, 519–523 (2015).

    Article  Google Scholar 

  44. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Taylor & Francis, New York, 1994).

  45. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  46. Zhou, H.-W. Mapping of P-wave slab anomalies beneath the Tonga, Kermadec and New Hebrides arcs. Phys. Earth Planet. Inter. 61, 199–229 (1990).

    Article  Google Scholar 

  47. Zhao, D. P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34 (2004).

    Article  Google Scholar 

  48. Fang, X., Fehler, M., Chen, T., Burns, D. & Zhu, Z. Sensitivity analysis of fracture scattering. Geophysics 78, T1–T10 (2012).

    Article  Google Scholar 

  49. Cheng, C. H. Crack models for a transversely isotropic medium. J. Geophys. Res. Solid Earth 98, 675–684 (1993).

    Article  Google Scholar 

  50. Thomsen, L. Elastic anisotropy due to aligned cracks in porous rock. Geophys. Prospect. 43, 805–829 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Lay for his suggestion to investigate the influence of the slab velocity anomaly on the radiation pattern. We also thank K. Burke, H. Zhou and J. Suppe for discussions, manuscript reading and comments. We appreciate the CMT data without which this work is impossible. We appreciate J. Wu for providing help on the tomography models. This work is supported by NSF EAR-1621878.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. started this research by analysing the CMT database to investigate anisotropy for global slabs using non-DC deep earthquakes. He also contributed to all aspects of the research, including manuscript writing. L.T. contributed to the analysis of anisotropy and earthquake radiation patterns. J.L. did the inversion of anisotropy and analysed and ruled out the effect of slab heterogeneity as a major factor in producing non-DC radiation. X.F. did the 3D elastic anisotropic FD modelling for the slab heterogeneity influence on earthquake radiation patterns. T.L. contributed to the petrological causes of the anisotropy.

Corresponding author

Correspondence to Yingcai Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zheng, Y., Thomsen, L. et al. Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nature Geosci 11, 696–700 (2018). https://doi.org/10.1038/s41561-018-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0188-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing