Article | Published:

Widespread distribution of OH/H2O on the lunar surface inferred from spectral data

Nature Geosciencevolume 11pages173177 (2018) | Download Citation


Remote-sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H2O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandrayaan-1 spacecraft have suggested that OH/H2O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H2O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H2O can be present at all latitudes, local times and surface types examined. This suggests the widespread presence of OH/H2O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space-weathered materials by the solar wind implantation of H+ and formation of OH at crystal defect sites, as opposed to H2O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H2O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Pieters, C. M. et al. Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009).

  2. 2.

    Sunshine, J. M. et al. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565–568 (2009).

  3. 3.

    Clark, R. N. Detection of adsorbed water and hydroxyl on the moon. Science 326, 562–564 (2009).

  4. 4.

    McCord, T. B., et al. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the moon mineralogy mapper (M3). J. Geophys. Res. 116, E00G05 (2011).

  5. 5.

    Kramer, G. Y., et al. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J. Geophys. Res. 116, E00G18 (2011).

  6. 6.

    Klima, R., Cahill, J., Hagerty, J. & Lawrence, D. Remote detection of magmatic water in Bullialdus Crater on the Moon. Nat. Geosci. 6, 737–741 (2013).

  7. 7.

    Li, S. & Milliken, R. E. An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and diviner temperatures. J. Geophys. Res. 121, 2081–2107 (2016).

  8. 8.

    Wöhler, C. A. et al. Temperature regime and water/hydroxyl behavior in the crater boguslawsky on the moon. Icarus 285, 118–136 (2017).

  9. 9.

    Bandfield, J. L. & Edwards, C. S. Derivation of martian surface slope characteristics from directional thermal infrared radiometry. Icarus 193, 139–157 (2008).

  10. 10.

    Bandfield, J. L., Hayne, P. O., Williams, J.-P., Greenhagen, B. T. & Paige, D. A. Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus 248, 357–372 (2015).

  11. 11.

    Clark, R. N., Pieters, C. M., Green, R. O., Boardman, J. W. & Petro, N. E. Thermal removal from near-infrared imaging spectroscopy data of the Moon. J. Geophys. Res. 116, E00G16 (2011).

  12. 12.

    Clark, R. N. Spectral properties of mixtures of montmorillonite and dark grains — implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res. 88, 10635–10644 (1983).

  13. 13.

    Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, Cambridge, 1993).

  14. 14.

    Milliken, R. E. & Mustard, J. F. Estimating the water content of hydrated minerals using reflectance spectroscopy. I. Effects of darkening agents and low-albedo materials. Icarus 189, 550–573 (2007).

  15. 15.

    Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R. & Petro, N. E. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003).

  16. 16.

    Head, J. W. & Wilson, L. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus 283, 176–223 (2017).

  17. 17.

    Head, J. W. & McCord, T. B. Imbrian-age highland volcanism on the moon — the Gruithuisen and Mairan domes. Science 199, 1433–1436 (1978).

  18. 18.

    Wilson, L. & Head, J. W. Lunar Gruithuisen and Mairan domes: rheology and mode of emplacement. J. Geophys. Res. 108, E001909 (2003).

  19. 19.

    Glotch, T. D. et al. Highly silicic compositions on the moon. Science 329, 1510–1513 (2010).

  20. 20.

    Ivanov, M. A., Head, J. W. & Bystrov, A. The lunar gruithuisen silicic extrusive domes: topographic configuration, morphology, ages, and internal structure. Icarus 273, 262–283 (2016).

  21. 21.

    Hemingway, D. J., Garrick-Bethell, I. & Kreslavsky, M. A. Latitudinal variation in spectral properties of the lunar maria and implications for space weathering. Icarus 261, 66–79 (2015).

  22. 22.

    Glotch, T. D. et al. Formation of lunar swirls by magnetic field standoff of the solar wind. Nat. Commun. 6, 6189 (2015).

  23. 23.

    Hood, L. L. & Schubert, G. Lunar magnetic anomalies and surface optical properties. Science 208, 49–51 (1980).

  24. 24.

    Dyar, M. D., Hibbitts, C. A. & Orlando, T. M. Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces. Icarus 208, 425–437 (2010).

  25. 25.

    Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl Acad. Sci. USA 111, 1732–1735 (2014).

  26. 26.

    Poston, M. J. et al. Water interactions with micronized lunar surrogates JSC-1A and albite under ultra-high vacuum with application to lunar observations. J. Geophys. Res. 118, 105–115 (2013).

  27. 27.

    Hibbitts, C. A. et al. Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus 213, 64–72 (2011).

  28. 28.

    Mitchell, E. H. et al. Ultraviolet photodesorption as a driver of water migration on the lunar surface. Planet. Space Sci. 89, 42–46 (2013).

  29. 29.

    Poston, M. J. et al. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus 255, 24–29 (2015).

  30. 30.

    Ichimura, A. S., Zent, A. P., Quinn, R. C., Sanchez, M. R. & Taylor, L. A. Hydroxyl (OH) production on airless planetary bodies: evidence from H+/D+ ion-beam experiments. Earth Planet. Sci. Lett. 345, 90–94 (2012).

  31. 31.

    Farrell, W. M., Hurley, D. M., Esposito, V. J., McLain, J. L. & Zimmerman, M. I. The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. J. Geophys. Res. 122, 269–289 (2017).

  32. 32.

    Farrell, W. M., Hurley, D. M. & Zimmerman, M. I. Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects. Icarus 255, 116–126 (2015).

  33. 33.

    Starukhina, L. Water detection on atmosphereless celestial bodies: alternative explanations of the observations. J. Geophys. Res. 106, 14701–14710 (2001).

  34. 34.

    Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

  35. 35.

    McCubbin, F. M. et al. Nominally hydrous magmatism on the Moon. Proc. Natl Acad. Sci. USA 107, 11223–11228 (2010).

  36. 36.

    Greenwood, J. P. et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 4, 79–82 (2011).

  37. 37.

    Milliken, R. E. & Li, S. Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nat. Geosci. 10, 561–565 (2017).

  38. 38.

    Rivkin, A. S. et al. 3 μm spectrophotometric survey of M- and E-class asteroids. Icarus 117, 90–100 (1995).

  39. 39.

    Barker, M. K. et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 273, 346–355 (2016).

  40. 40.

    Scholten, F. J. et al. GLD100: The near-global lunar 100m raster DTM from LROC WAC stereo image data. J. Geophys. Res. 117, E00H17 (2012).

  41. 41.

    Keihm, S. J. Interpretation of the lunar microwave brightness temperature spectrum — feasibility of orbital heat flow mapping. Icarus 60, 568–589 (1984).

  42. 42.

    Vasavada, A. R. et al. Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. 117 (2012).

  43. 43.

    Helfenstein, P. & Shepard, M. K. Submillimeter-scale topography of the lunar regolith. Icarus 141, 107–131 (1999).

  44. 44.

    Shepard, M. K., Brackett, R. A. & Arvidson, R. E. Self-affine (fractal) topography: surface parameterization and radar scattering. J. Geophys. Res. 100, 11709–11718 (1995).

  45. 45.

    Smith, B. G. Lunar surface roughness: shadowing and thermal emission. J. Geophys. Res. 72, 4059–4067 (1967).

  46. 46.

    Besse, S. et al. A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M3). Icarus 222, 229–242 (2013).

  47. 47.

    Logan, L. & Hunt, G. R. Emission spectra of particulate silicates under simulated lunar conditions. J. Geophys. Res. 75, 6539–6548 (1970).

  48. 48.

    Henderson, B. G., Lucey, P. G. & Jakosky, B. M. New laboratory measurements of mid-IR emission spectra of simulated planetary surfaces. J. Geophys. Res. 101, 14969–14975 (1996).

  49. 49.

    Donaldson Hanna, K. L. et al. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: application to Diviner thermal infrared observations of the Moon. Icarus 283, 326–342 (2017).

  50. 50.

    Salisbury, J. W., Murcray, D. G., Williams, W. J. & Blatherwick, R. D. Thermal infrared spectra of the Moon. Icarus 115, 181–190 (1995).

  51. 51.

    Greenhagen, B. T. et al. Global silicate mineralogy of the moon from the diviner lunar radiometer. Science 329, 1507–1509 (2010).

  52. 52.

    Shkuratov, Y. et al. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 59, 1326–1371 (2011).

  53. 53.

    Nicodemus, F. E. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4, 767–775 (1965).

Download references


We would like to acknowledge funding by the Lunar Reconnaissance Orbiter program and Lunar Data Analysis Program grant NNX16AN63G. Our work benefited from discussions with the LRO Diviner science team, S. Li, and R. Milliken.

Author information

Author notes

    • Michael J. Poston

    Present address: Southwest Research Institute, San Antonio, TX, USA


  1. Space Science Institute, Boulder, CO, USA

    • Joshua L. Bandfield
  2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • Michael J. Poston
  3. Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD, USA

    • Rachel L. Klima
  4. Northern Arizona University, Flagstaff, AZ, USA

    • Christopher S. Edwards


  1. Search for Joshua L. Bandfield in:

  2. Search for Michael J. Poston in:

  3. Search for Rachel L. Klima in:

  4. Search for Christopher S. Edwards in:


J.L.B. developed the thermal correction model and led the processing and analysis of the M3 and Diviner data. M.J.P. contributed to the interpretation of spectral features and the development of formation mechanism hypotheses. R.L.K. contributed to the spectral interpretation of the M3 data and discussions of petrological sources of OH/H2O. C.S.E. contributed to the development of the thermal and roughness model and assisted with the interpretation of the spectral data sets.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Joshua L. Bandfield.

Supplementary information

  1. Supplementary Information

    Supplementary figures and tables

About this article

Publication history