Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

Abstract

Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation and breakdown of super-hydrated kaolinite.
Fig. 2: Volume expansion of super-hydrated kaolinite.
Fig. 3: Structural details of super-hydrated kaolinite.
Fig. 4: A role of super-hydrated kaolinite in the subduction water cycle.

References

  1. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B10401 (2011)

  2. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geoth. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  3. Tatsumi, Y. & Eggins, S. Subduction Zone Magmatism (Blackwell Scientific, Oxford, 1995).

  4. Mibe, K., Fujii, T. & Yasuda, A. Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge. Nature 401, 259–262 (1999).

    Article  Google Scholar 

  5. Hattori, K. H. & Guillot, S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31, 525–528 (2003).

    Article  Google Scholar 

  6. Ohtani, E. Hydrous minerals and the storage of water in the deep mantle. Chem. Geol. 418, 6–15 (2015).

    Article  Google Scholar 

  7. Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858-861 (1995).

    Article  Google Scholar 

  8. Pawley, A. R. The pressure and temperature stability limits of lawsonite: implications for H2O recycling in subduction zones. Contrib. Mineral. Petr. 118, 99–108 (1994).

    Article  Google Scholar 

  9. Schmidt, M. W. Lawsonite: upper pressure stability and formation of higher density hydrous phases. Am. Miner. 80, 1286–1292 (1995).

    Article  Google Scholar 

  10. Sato, K., Katsura, T. & Ito, E. Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet. Sci. Lett. 146, 511–526 (1997).

    Article  Google Scholar 

  11. Poli, S. & Schmidt, M. W. H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J. Geophys. Res. 100, 22299–22314 (1995).

    Article  Google Scholar 

  12. Okazaki, K. & Hirth, G. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature 530, 81–84 (2016).

    Article  Google Scholar 

  13. Hyndman, R. D., Yamano, M. Y. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Island Arc 6, 244–260 (1997).

    Article  Google Scholar 

  14. Smyth, J. R. β-Mg2SiO4: A potential host for water in the mantle? Am. Miner. 72, 1051–1055 (1987).

    Google Scholar 

  15. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345–357 (1996).

    Article  Google Scholar 

  16. Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).

    Article  Google Scholar 

  17. Raleigh, C. & Paterson, M. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70, 3965–3985 (1965).

    Article  Google Scholar 

  18. Jung, H., Green, H. W. II & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549 (2004).

    Article  Google Scholar 

  19. Weaver, C. E. Clays, Muds, and Shales in Developments in Sedimentology Vol. 44, 1st edn (Elsevier, Amsterdam, 1989).

  20. Windom, H. L. Lithogenous material in marine sediments. Chem. Oceanogr. 5, 103–135 (1976).

    Google Scholar 

  21. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  22. Laiglesia, A. Pressure-induced disorder in kaolinite. Clay Miner. 28, 311–319 (1993).

    Article  Google Scholar 

  23. Johnston, C. T. et al. Novel pressure-induced phase transformations in hydrous layered materials. Geophys. Res. Lett. 29, 17-1–17-4 (2002).

    Article  Google Scholar 

  24. Welch, M. D. & Crichton, W. A. Pressure-induced transformations in kaolinite. Am. Mineral. 95, 651–654 (2010).

  25. Seoung, D., Lee, Y., Kao, C. C., Vogt, T. & Lee, Y. Super-hydrated zeolites: pressure-induced hydration in natrolites. Chem.-Eur. J. 19, 10876–10883 (2013).

    Article  Google Scholar 

  26. Seoung, D., Lee, Y., Kao, C. C., Vogt, T. & Lee, Y. Two-step pressure-induced superhydration in small pore natrolite with divalent extra-framework cations. Chem. Mat. 27, 3874–3880 (2015).

    Article  Google Scholar 

  27. You, S. J. et al. Pressure-induced water insertion in synthetic clays. Angew. Chem. Int. Ed. 52, 3891–3895 (2013).

    Article  Google Scholar 

  28. Lee, Y., Vogt, T. & Hriljac, J. Pressure-induced migration of zeolitic water in laumontite. Phys. Chem. Miner. 31, 421–428 (2004).

    Google Scholar 

  29. White, C. L., Ruiz‐Salvador, A. R. & Lewis, D. W. Pressure-induced hydration effects in the zeolite laumontite. Angew. Chem. Int. Ed. 43, 469–472 (2004).

    Article  Google Scholar 

  30. Simon, F. & Glatzel, G. Bemerkungen zur Schmelzdruckkurve. Z. Anorg. Allg. Chem. 178, 309–316 (1929).

    Article  Google Scholar 

  31. Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 7, 1103–1112 (1939).

    Article  Google Scholar 

  32. Wang, D., Yi, L., Huang, B. & Liu, C. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction. Phase Transit. 88, 560–566 (2015).

    Article  Google Scholar 

  33. Hancock, J. & Sharp, J. Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55, 74–77 (1972).

    Article  Google Scholar 

  34. Fumagalli, P., Stixrude, L., Poli, S. & Snyder, D. The 10Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet. Sci. Lett. 186, 125–141 (2001).

    Article  Google Scholar 

  35. Welch, M. D., Pawley, A. R., Ashbrook, S. E., Mason, H. E. & Phillips, B. L. Si vacancies in the 10-Å phase. Am. Mineral. 91, 1707–1710 (2006).

    Article  Google Scholar 

  36. Phillips, B. L., Mason, H. E. & Guggenheim, S. Hydrogen bonded silanols in the 10 Å phase: Evidence from NMR spectroscopy. Am. Mineral. 92, 1474–1485 (2007).

    Article  Google Scholar 

  37. Pawley, A. R., Welch, M. D., Lennie, A. R. & Jones, R. L. Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content. Am. Mineral. 95, 1671–1678 (2010).

    Article  Google Scholar 

  38. Bish, D. L. & Vondreele, R. B. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clay Clay Miner. 37, 289–296 (1989).

    Article  Google Scholar 

  39. Welch, M. D., Montgomery, W., Balan, E. & Lerch, P. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum-mechanical calculations. Phys. Chem. Miner. 39, 143–151 (2012).

    Article  Google Scholar 

  40. Kodama, H. & Oinuma, K. Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clay Clay Miner. 11, 236–249 (1963).

    Article  Google Scholar 

  41. Wilson, M. J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Chapman & Hall, London, 1994).

  42. Frost, R. L., Kloprogge, J. T., Thu, H. T. T. & Kristof, J. The effect of pressure on the intercalation of an ordered kaolinite. Am. Mineral. 83, 1182–1187 (1998).

    Article  Google Scholar 

  43. Costanzo, P. M., Giese, R. F. & Lipsicas, M. Static and dynamic structure of water in hydrated kaolinites. 1. The static structure. Clay Clay Miner. 32, 419–428 (1984).

    Article  Google Scholar 

  44. Daniels, P. & Wunder, B. Al3Si2O7(OH)3, phase Pi (formerly piezotite): Crystal structure of a synthetic high-pressure silicate rediscovered. Eur. J. Mineral. 8, 1283–1292 (1996).

    Article  Google Scholar 

  45. Friedrich, A. et al. High-pressure properties of diaspore, AlO(OH). Phys. Chem. Mineral. 34, 145–157 (2007).

    Article  Google Scholar 

  46. Kanzaki, M. Crystal structure of a new high-pressure polymorph of topaz-OH. Am. Mineral. 95, 1349–1352 (2010).

    Article  Google Scholar 

  47. Ohtani, E. Water in the mantle. Elements 1, 25–30 (2005).

    Article  Google Scholar 

  48. Karato, S. I., Paterson, M. S. & FitzGerald, J. D. Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91, 8151–8176 (1986).

    Article  Google Scholar 

  49. Iwamori, H. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett. 160, 65–80 (1998).

    Article  Google Scholar 

  50. Inoue, T., Yurimoto, H. & Kudoh, Y. Hydrous modified spinel, Mg1.75SiH0.5O4—A new water reservoir in the mantle transition region. Geophys. Res. Lett. 22, 117–120 (1995).

    Article  Google Scholar 

  51. Shieh, S. R., Mao, H.-k, Hemley, R. J. & Ming, L. C. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet. Sc. Lett. 159, 13–23 (1998).

    Article  Google Scholar 

  52. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800-kbar under quasihydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  Google Scholar 

  53. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  Google Scholar 

  54. Thompson, P., Cox, D. E. & Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987).

    Article  Google Scholar 

  55. Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947).

    Article  Google Scholar 

  56. Comboni, D. et al. Pargasite at high pressure and temperature. Phys. Chem. Minerals https://doi.org/10.1007/s00269-017-0915-0 (2017).

  57. Liermann, H.-P. et al. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III. J. Synchrotron Radiat. 22, 908–924 (2015).

    Article  Google Scholar 

  58. Wang, Y. et al. Thermal equation of state of copper studied by high PT synchrotron X-ray diffraction. Appl. Phys. Lett. 94, 071904 (2009)

  59. Larson, A. C. & Von Dreele, R. B. GSAS—General Structure Analysis System (Los Alamos National Laboratory, 1986).

  60. Sano, A., Ohtani, E., Kubo, T. & Funakoshi, K. In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide delta-AlOOH at high pressure and temperature. J. Phys. Chem. Solids. 65, 1547–1554 (2004).

    Article  Google Scholar 

  61. Dollase, W. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Crystallogr. 19, 267–272 (1986).

    Article  Google Scholar 

  62. Seagle, C. T., Heinz, D. L., Liu, Z. & Hemley, R. J. Synchrotron infrared reflectivity measurements of iron at high pressures. Appl. Opt. 48, 545–552 (2009).

    Article  Google Scholar 

  63. Wunder, B. et al. Synthesis, stability, and properties of Al2SiO4(OH)2: A fully hydrated analogue of topaz. Am. Mineral. 78, 285–297 (1993).

    Google Scholar 

  64. Tsujimori, T., Sisson, V. B., Liou, J. G., Harlow, G. E. & Sorensen, S. S. Petrologic characterization of Guatemalan lawsonite eclogite: Eclogitization of subducted oceanic crust in a cold subduction zone. Geol. Soc. Am. S. 403, 147–168 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Research Laboratory (NRF-2009-00408) and National Research Laboratory (NRF-2015R1A2A1A01007227) programs of the Korean Ministry of Science, ICT and Planning (MSIP). H.-K.M. was supported by NSF Grants EAR-1345112 and EAR-1447438. We also received surpport from NRF grants NRF-2016K1A4A3914691 and NRF-2016K1A3A7A09005244. Experiments using the synchrotrons were supported by the Collaborative Access Program of SSRL and general user programs of PAL, SSRF, ALS and APS. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. The operation of the Infrared Lab of the NSLS-II at BNL was supported by COMPRES (EAR 1606856) and CDAC (DE-NA-0002006). NSLS-II is supported by DOE-BES under Contract No. DE-SC0012704. The ALS is support by DOE-BES under Contract No. DE-AC02-05CH11231. Part of this work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association (HGF).

Author information

Authors and Affiliations

Authors

Contributions

H. H. contributed to the experiments and data analysis with the help from D.S., Z.L., H.-P.L. and H.C. Y.L. designed the research, discussed the results with T.V., C.-C.K. and H.-K.M. and worked on the manuscript with all authors.

Corresponding author

Correspondence to Yongjae Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary experimental data and discussion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H., Seoung, D., Lee, Y. et al. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle. Nature Geosci 10, 947–953 (2017). https://doi.org/10.1038/s41561-017-0008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-017-0008-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing