Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A passivating contact for silicon solar cells formed during a single firing thermal annealing

Abstract

Passivating contacts are indispensable for achieving high conversion efficiency in crystalline-silicon solar cells. Their realization and integration into a convenient process flow have become crucial research objectives. Here, we report an alternative passivating contact that is formed in a single post-deposition annealing step called ‘firing’, an essential step for current solar cell manufacturing. As firing is a fast (<10 s) and high-temperature (>750 °C) anneal, the required microstructural and electrical properties of the passivating contact are stringent. We demonstrate that tuning the carbon content of boron-doped silicon-based thin films inhibits firing-induced layer delamination without preventing a partial crystallization. The latter promotes charge-carrier selectivity, even in the absence of a diffused doped region beyond the oxide, by inducing hole accumulation near the wafer surface. We fabricated proof-of-concept solar cells employing the developed technology, demonstrating an open circuit voltage of 698 mV and an efficiency of 21.9%, and show how it could be a drop-in replacement for today’s rear contacts based on locally opened dielectric passivation stacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication steps of the FPC concept.
Fig. 2: The valence band-edge alignment.
Fig. 3: Surface passivation and charge carrier transport of the FPC.
Fig. 4: The FPC concept applied to proof-of-concept p-type hybrid solar cells.
Fig. 5: SIMS analysis of the FPC layers.
Fig. 6: The microstructure of the FPC layers.
Fig. 7: Fourier transform infrared spectroscopy of the single FPC stack.
Fig. 8: Hydrogen evolution in the FPC layer.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Market Report Series: Renewables 2017 (IEA Publications, 2017).

  2. Marc, R., Steinkemper, H., Hermle, M. & Glunz, S. W. Numerical current density loss analysis of solar cell concepts. IEEE J. Photovolt. 4, 533–539 (2014).

    Article  Google Scholar 

  3. Ingenito, A., Isabella, O., Solntsev, S. & Zeman, M. Solar energy materials & solar cells accurate opto-electrical modeling of multi-crystalline silicon wafer-based solar cells. Sol. Energy Mater. Sol. Cells 123, 17–29 (2014).

    Article  Google Scholar 

  4. Green, M. A. The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).

    Article  Google Scholar 

  5. International Technology Roadmap for Photovoltaic Results 2017 Ninth Edition (ITRPV, 2018).

  6. Min, B. et al. A roadmap toward 24% efficient PERC solar cells in industrial mass production. IEEE J. Photovolt. 7, 1541–1550 (2017).

    Article  Google Scholar 

  7. Cuevas, A. Physical model of back line-contact front-junction solar cells. J. Appl. Phys. 113, 164502 (2013).

  8. Niewelt, T., Schön, J., Warta, W., Glunz, S. W. & Schubert, M. C. Degradation of crystalline silicon due to boron-oxygen defects. IEEE J. Photovolt. 7, 383–398 (2017).

    Article  Google Scholar 

  9. Bothe, K., Hezel, R. & Schmidt, J. Recombination-enhanced formation of the metastable boron-oxygen complex in crystalline silicon. Appl. Phys. Lett. 83, 1125–1127 (2003).

    Article  Google Scholar 

  10. Hallam, B., Abbott, M., Nærland, T. & Wenham, S. Fast and slow lifetime degradation in boron-doped Czochralski silicon described by a single defect. Phys. Status Solidi Rapid Res. Lett. 10, 520–524 (2016).

    Article  Google Scholar 

  11. Richter, A. et al. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017).

    Article  Google Scholar 

  12. 26.1% Record Efficiency for p-Type Crystalline Si Solar Cells (ISFH, 2018); https://isfh.de/en/26-1-record-efficiency-for-p-type-crystalline-si-solar-cells/

  13. Gan, J. Y. & Swanson, R. M. Polysilicon emitters for silicon concentrator solar cells. In Proc. 21st IEEE PVSC 245–250 (IEEE, 1990).

  14. Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark, Y. H. A 720mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211–1213 (1985).

    Article  Google Scholar 

  15. Kwark, Y. H. & Swanson, R. M. N-type SIPOS and poly-silicon emitters. Solid State Electron. 30, 1121–1125 (1987).

    Article  Google Scholar 

  16. Benton, J. L. et al. Hydrogen passivation of point defects in silicon. Appl. Phys. Lett. 36, 670–671 (1980).

    Article  Google Scholar 

  17. Myers, S. M., Seibt, M. & Schröter, W. Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795–3819 (2000).

    Article  Google Scholar 

  18. De Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

    Google Scholar 

  19. Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. A passivated rear contact for high-efficiency. In Proc. 28th European PV Solar Energy Conference and Exhibition (WIP, 2013).

  20. Rohatgi, A. et al. Fabrication and modeling of high-efficiency front junction N-type silicon solar cells with tunnel oxide passivating back contact. IEEE J. Photovolt. 7, 1236–1243 (2017).

    Article  Google Scholar 

  21. Nemeth, B. et al. Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells. J. Mater. Res. 31, 671–681 (2016).

    Article  Google Scholar 

  22. Nogay, G. et al. Silicon-rich silicon carbide hole-selective rear contacts for crystalline-silicon-based solar cells. ACS Appl. Mater. Interfaces 8, 35660–35667 (2016).

    Article  Google Scholar 

  23. Yang, G. et al. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells. Appl. Phys. Lett. 108, 033903 (2016).

    Article  Google Scholar 

  24. Stuckelberger, J. et al. Recombination analysis of phosphorus-doped nanostructured silicon oxide passivating electron contacts for silicon solar cells. IEEE J. Photovolt. 8, 389–396 (2018).

    Article  Google Scholar 

  25. Nogay, G. et al. Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films. Sol. Energy Mater. Sol. Cells 173, 18–24 (2017).

    Article  Google Scholar 

  26. Reichel, C. et al. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells. J. Appl. Phys. 118, 205701 (2015).

    Article  Google Scholar 

  27. Yan, D., Cuevas, A., Wan, Y. & Bullock, J. Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers. Sol. Energy Mater. Sol. Cells 152, 73–79 (2016).

    Article  Google Scholar 

  28. Yan, D., Cuevas, A., Bullock, J., Wan, Y. & Samundsett, C. Phosphorus-diffused polysilicon contacts for solar cells. Sol. Energy Mater. Sol. Cells 142, 75–82 (2015).

    Article  Google Scholar 

  29. Stodolny, M. K. et al. n-Type polysilicon passivating contact for industrial bifacial n-type solar cells. Sol. Energy Mater. Sol. Cells 158, 24–28 (2016).

    Article  Google Scholar 

  30. Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Article  Google Scholar 

  31. Tetzlaff, D. et al. Introducing pinhole magnification by selective etching: application to poly-Si on ultra-thin silicon oxide films. Energy Procedia 124, 435–440 (2017).

    Article  Google Scholar 

  32. Peibst, R. et al. Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60–67 (2016).

    Article  Google Scholar 

  33. Römer, U. Polycrystalline Silicon/Monocrystalline Silicon Junctions and Their Application as Passivated Contacts for Si Solar Cells. PhD thesis, Leibniz Universität Hannover (2016).

  34. Römer, U. et al. Recombination behavior and contact resistance of n + and p + poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells 131, 85–91 (2014).

    Article  Google Scholar 

  35. Haase, F. et al. Interdigitated back contact solar cells with polycrystalline silicon on oxide passivating contacts for both polarities. Jpn J. Appl. Phys. 56, 8S2 (2017).

    Article  Google Scholar 

  36. Bullot, J. & Schmidt, M. P. Physics of amorphous silicon–carbon alloys. Phys. Status Solidi B 143, 345–418 (1987).

    Article  Google Scholar 

  37. Boccard, M. & Holman, Z. C. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells. J. Appl. Phys. 118, 065704 (2015).

    Article  Google Scholar 

  38. Finger, F. et al. Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Appl. Phys. Lett. 65, 2588–2590 (1994).

    Article  Google Scholar 

  39. Imura, T. et al. Related content evaluation of boron and phosphorus doping microcrystalline silicon films. Jpn J. Appl. Phys. 23, 549–551 (1984).

    Article  Google Scholar 

  40. Seif, J. P. et al. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells. IEEE J. Photovolt. 6, 1132–1140 (2016).

    Article  Google Scholar 

  41. Vetter, M. et al. IR-study of a-SiCx:H and a-SiCxNy:H films for c-Si surface passivation. Thin Solid Films 451–452, 340–344 (2004).

    Article  Google Scholar 

  42. Cartier, E., Stathis, J. H. & Buchanan, D. A. Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl. Phys. Lett. 63, 1510–1512 (1993).

    Article  Google Scholar 

  43. Stesmans, A. Interaction of Pb defects at the (111) Si/SiO2 interface with molecular hydrogen: Simultaneous action of passivation and dissociation. J. Appl. Phys. 88, 489–497 (2000).

    Article  Google Scholar 

  44. Wilkinson, A. R. & Elliman, R. G. The effect of annealing environment on the luminescence of silicon nanocrystals in silica. J. Appl. Phys. 96, 4018–4020 (2004).

    Article  Google Scholar 

  45. Steinkemper, H., Geisemeyer, I., Schubert, M. C., Warta, W. & Glunz, S. W. Temperature-dependent modeling of silicon solar cells-Eg, n i, Recombination, and VOC. IEEE J. Photovolt. 7, 1–8 (2017).

    Article  Google Scholar 

  46. Fujiwara, H. & Kondo, M. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells. Appl. Phys. Lett. 90, 013503 (2007).

    Article  Google Scholar 

  47. Pankove, J. I. & Tarng, M. L. Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 2–4 (1979).

    Article  Google Scholar 

  48. De Wolf, S., Olibet, S., & Ballif, C. Stretched-exponential a-Si:H/c-Si interface recombination decay. Appl. Phys. Lett. 93, 2–4 (2008).

    Google Scholar 

  49. Hekmatshoar, B., Shahrjerdi, D., Hopstaken, M. & Sadana, D. Metastability of hydrogenated amorphous silicon passivation on crystalline silicon and implication to photovoltaic devices. IEEE Int. Reliab. Phys. Symp. Proc. 1, 562–565 (2011).

    Google Scholar 

  50. Defresne, A., Plantevin, O. & RocaCabarrocas, P. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation. AIP Adv. 6, 125107 (2016).

    Article  Google Scholar 

  51. Nogay, G. et al. Nanocrystalline silicon carrier collectors for silicon heterojunction solar cells and impact on low-temperature device characteristics. IEEE J. Photovolt. 6, 1654–1662 (2016).

    Article  Google Scholar 

  52. Stapinski, T., Ambrosone, G., Coscia, U., Giorgis, F. & Pirri, C. F. Defect characterization of a-SiC:H and a-SiN:H alloys produced by ultrahigh vacuum plasma enhanced chemical vapor deposition in different plasma conditions. Physica B 254, 99–106 (1998).

    Article  Google Scholar 

  53. Anderson, D. A. & Spear, W. E. Electrical and optical properties of amorphous silicon carbide, silicon nitride and germanium carbide prepared by the glow discharge technique. Philos. Mag. 35, 1–16 (1977).

    Article  Google Scholar 

  54. Snel, J. The doped Si/SiO2 interface. Solid State Electron. 24, 135–139 (1981).

    Article  Google Scholar 

  55. Saito, N., Tanaka, N. & Nakaaki, I. Optical, structural, electrical and optoelectronic properties of hydrogenated amorphous Si1−xCx alloy thin films prepared by planar magnetron sputtering method. Appl. Phys. A 38, 37–43 (1985).

    Article  Google Scholar 

  56. Serenelli, L. et al. Hydrogen plasma and thermal annealing treatments on a-Si:H thin film for c-Si surface passivation. Energy Procedia 60, 102–108 (2014).

    Article  Google Scholar 

  57. Pai, P. G., Chao, S. S., Takagi, Y. & Lucovsky, G. Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 4, 689–694 (1986).

    Article  Google Scholar 

  58. Beyer, W. Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon. Sol. Energy Mater. Sol. Cells 78, 235–267 (2003).

    Article  Google Scholar 

  59. Beyer, W. & Wagner, H. The role of hydrogen in a-Si:H - results of evolution and annealing studies. J. Non. Cryst. Solids 59–60, 161–168 (1983).

    Article  Google Scholar 

  60. Kane, D. M. & Swanson, R. M. Measurement of the emitter saturation current by a contactless photoconductivity decay method. In Proc. 18th IEEE Photovoltaic Specialists Conference 578–583 (IEEE, 1985).

  61. Cliff, G. & Lorimer, G. W. The quantitative analysis of thin specimens. J. Microsc. 103, 203–207 (1975).

    Article  Google Scholar 

  62. PVLighthouse cell calculator (PV Lighthouse Pty. Ltd.); https://www.pvlighthouse.com.au/equivalent-circuit

Download references

Acknowledgements

The authors gratefully acknowledge support by the Swiss National Science Foundation (SNF) under grant nos 200021_14588/1, 200021L_172924, 200021L_172924, IZLIZ2_156641 and CRSII2_154474/2, the Swiss Federal Office for Energy (SFOE) under grant no. SI/501253-01 and the National Research Fund Luxembourg (FNR) through grant INTER/SNF/16/11536628. B. El Adib (LIST) is thanked for his skilful technical assistance in the SIMS analysis and P. J. Fiala, A. N. Fioretti and A. Hessler are thanked for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.I., P.L. and C.B. conceived the idea. A.I. designed the experiments and carried out the device and layer fabrication and characterization including lifetime, TLM, JV, FTIR, Raman and optical microscopy analyses. G.N., C.A. and J.H. contributed to the solar cell fabrication process. Q.J. carried out the TEM observations, S.E. performed the SIMS measurements and E.R. and T.K. executed the thermal desorption spectroscopy analysis. P.L. and C.B. contributed to the definition and presentation of the paper contents. P.L., F.-J.H., M.M.-M., T.W., N.V., M.D. and C.B. discussed the results. A.I., P.L., M.D. and C.B. organized the research. A.I. wrote the paper, and all other authors provided feedback.

Corresponding author

Correspondence to Andrea Ingenito.

Ethics declarations

Competing interests

A patent application has been filed (application number pat2522992PC00) for the fired passivating contact approach reported in the manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figures 1–3, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingenito, A., Nogay, G., Jeangros, Q. et al. A passivating contact for silicon solar cells formed during a single firing thermal annealing. Nat Energy 3, 800–808 (2018). https://doi.org/10.1038/s41560-018-0239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0239-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing