Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards

Subjects

Abstract

Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perovskite solar cell structure.

Similar content being viewed by others

References

  1. Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K. & Woodhouse, M. Technology advances needed for photovoltaics to achieve widespread grid price parity. Prog. Photovolt. Res. App. 24, 1272–1283 (2016).

  2. IEC 61215-1:2016 Terrestrial Photovoltaic (PV) Modules - Design Qualification and Type Approval - Part 1: Test Requirements (IEC, 2016).

  3. Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015).

    Article  Google Scholar 

  4. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  Google Scholar 

  5. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  6. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

  7. Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    Article  Google Scholar 

  8. Chang, N. L. et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovolt. Res. App. 25, 390–405 (2017).

    Article  Google Scholar 

  9. Song, Z. N. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  Google Scholar 

  10. Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Mater. Solar Cells 95, 1253–1267 (2011).

    Article  Google Scholar 

  11. Leijtens, T. et al. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015).

  12. Niu, G. D., Guo, X. D. & Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    Article  Google Scholar 

  13. Wang, D., Wright, M., Elumalai, N. K. & Uddin, A. Stability of perovskite solar cells. Solar Energy Mater. Solar Cells 147, 255–275 (2016).

    Article  Google Scholar 

  14. Wang, Z., Shi, Z. J., Li, T. T., Chen, Y. H. & Huang, W. Stability of perovskite solar cells: A prospective on the substitution of the A-cation and X-anion. Angew. Chem. Int. Ed. 56, 1190–1212 (2017).

    Article  Google Scholar 

  15. Leijtens, T. et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017).

    Article  Google Scholar 

  16. Habisreutinger, S. N., McMeekin, D. P., Snaith, H. J. & Nicholas, R. J. Research update: strategies for improving the stability of perovskite solar cells. APL Mater. 4, 15 (2016).

  17. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  Google Scholar 

  18. Ross, R. G. PV reliability development lessons from JPLs flat plate solar array project. IEEE J. Photovolt. 4, 291–298 (2014).

    Article  Google Scholar 

  19. Hoffman, A. & Ross, R. Environmental qualification testing of terrestrial solar cell modules. In 13th Photovoltaic Specialists Conference 835–842 (IEEE, 1978).

  20. Silverman, T. J., Mansfield, L., Repins, I. & Kurtz, S. Damage in monolithic thin-film photovoltaic modules due to partial shade. IEEE J. Photovol. 6, 1333–1338 (2016).

    Article  Google Scholar 

  21. Kempe, M. D., Panchagade, D., Reese, M. O. & Dameron, A. A. Modeling moisture ingress through polyisobutylene-based edge-seals. Prog. Photovolt. Res. App. 23, 570–581 (2015).

    Article  Google Scholar 

  22. Kurtz, S. R. et al. Qualification testing versus quantitative reliability testing of PV – Gaining confidence in a rapidly changing technology. In 33rd European Photovoltaic Solar Energy Conference and Exhibition 1302–1311 (EU, 2017).

  23. Hacke, P. et al. Application of the terrestrial photovoltaic module accelerated test-to-failure protocol. In Photovoltaic Specialist Conference 0930–0936 (IEEE, 2014).

  24. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).

    Article  Google Scholar 

  25. Lee, S.-W. et al. UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016).

  26. Wang, Z. P. et al. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv. Mater. 29, 1604186 (2017).

    Article  Google Scholar 

  27. Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    Article  Google Scholar 

  28. Mei, A. Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  Google Scholar 

  29. Pern, F. & Czanderna, A. Characterization of ethylene vinyl acetate (EVA) encapsulant: Effects of thermal processing and weathering degradation on its discoloration. Solar Energy Mater. Solar Cells 25, 3–23 (1992).

    Article  Google Scholar 

  30. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  31. Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016).

  32. Wang, Z. P. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  Google Scholar 

  33. Leguy, A. M. A. et al. Reversible hydration of CH(3)NH(3)Pbl(3) in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    Article  Google Scholar 

  34. Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014).

    Article  Google Scholar 

  35. Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for 1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

    Article  Google Scholar 

  36. Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    Article  Google Scholar 

  37. Subbiah, A. S. et al. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748–1753 (2014).

    Article  Google Scholar 

  38. Liu, J. et al. Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interfaces 3, 1600571 (2016).

    Article  Google Scholar 

  39. Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    Article  Google Scholar 

  40. Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015).

    Article  Google Scholar 

  41. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  42. Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  Google Scholar 

  43. Kulbak, M. et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016).

    Article  Google Scholar 

  44. Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).

    Article  Google Scholar 

  45. Lee, J. W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 01310 (2015).

    Google Scholar 

  46. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  47. Trout, T. J. et al. PV module durability - connecting field results, accelerated testing, and materials. In 44th Photovoltaic Specialist Conference (IEEE, 2017).

  48. Bosco, N., Silverman, T. J. & Kurtz, S. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints. Microelectron. Reliab. 62, 124–129 (2016).

    Article  Google Scholar 

  49. Shi, L. et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 9, 25073–25081 (2017).

    Article  Google Scholar 

  50. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  Google Scholar 

  51. Sheikh, A. D. et al. Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9, (35018–35029 (2017).

    Google Scholar 

  52. Luo, W. et al. Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ. Sci. 10, 43–68 (2017).

    Article  Google Scholar 

  53. Bowring, A. R., Bertoluzzi, L., O’Regan, B. C. & McGehee, M. D. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018).

    Article  Google Scholar 

  54. Simpson, L., Muller, M., Deceglie, M., Miller, D. & Moutinho, H. The Modeling of the Effects of Soiling, Its Mechanisms, and the Corresponding Abrasion (NREL, 2016).

  55. Cunningham, D. W. et al. Standards. Photovoltaic Module Reliability Workshop 559–620 (2012).

  56. Otth, D. H. & Ross, R. G. Assessing photovoltaic module degradation and lifetime from long-term environmental tests. In 29th Photovoltaic Specialists Conference 121–126 (IEEE, 1983).

  57. Ross Jr, R. G. Crystalline-silicon reliability lessons for thin-film modules. In 18th IEEE Photovoltaic Specialists Conference 1014–1020 (IEEE, 1985).

  58. Coyle, D. J. Life prediction for CIGS solar modules part 1: modeling moisture ingress and degradation. Prog. Photovolt. Res. App. 21, 156–172 (2013).

  59. Coyle, D. J. et al. Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects. Prog. Photovolt. Res. App. 21, 173–186 (2013).

  60. Coyle, D. J., Blaydes, H. A., Pickett, J. E., Northey, R. S. & Gardner, J. O. in 34th Photovoltaic Specialists Conference 001943–001947 (IEEE, 2009).

  61. Hacke, P. et al. Elucidating PID degradation mechanisms and in situ dark I–V monitoring for modeling degradation rate in CdTe thin-film modules. IEEE J. Photovolt. 6, 1635–1640 (2016).

    Article  Google Scholar 

  62. Fowler, S., Gu, X., Miller, D. & Phillips, N. UV Weathering standards development within the PV industry. NREL PV Reliability Workshop 396–434 (NREL, 2017).

  63. Yadong Lyu, L.-C. Y., Lin, C.-C., Stanley, D. & Gu, X. Effect of intensity and wavelength of spectral UV light on discoloration of laminated glass/EVA/PPE PV module. NREL 2017 PV Module Reliability Workshop, 1 (NREL, 2017).

  64. Fischer, R. & Ketola, W. Error analysis and associated risks for accelerated weathering results. Third International Service Life Symposium 79–92 (2005).

  65. Witteck, R. et al. UV-induced degradation of PERC solar modules with UV-transparent encapsulation materials. Prog. Photovolt. Res. App. 25, 409–416 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Oxford University was supported by the Engineering and Physical Sciences Research Council, UK, and from the European Union’s Horizon 2020 framework programme for research and innovation under grant agreement no. 653296 of the CHEOPS project. The work at National Renewable Energy Laboratory was supported by the US Department of Energy under contract no. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry J. Snaith or Peter Hacke.

Ethics declarations

Competing interests

Henry J. Snaith is Founder and CSO of Oxford PV Ltd, a company commercializing perovskite photovoltaics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snaith, H.J., Hacke, P. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nat Energy 3, 459–465 (2018). https://doi.org/10.1038/s41560-018-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-018-0174-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing