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Single-cell transcriptomics reveals the brain 
evolution of web-building spiders

Pengyu Jin    1,6, Bingyue Zhu1,2,6, Yinjun Jia3,4, Yiming Zhang    1,2, Wei Wang1,5, 
Yunxiao Shen1,2, Yu Zhong1,2, Yami Zheng1,2, Yang Wang1,2, Yan Tong1,2, 
Wei Zhang    3,4 & Shuqiang Li    1 

Spiders are renowned for their efficient capture of flying insects using 
intricate aerial webs. How the spider nervous systems evolved to cope with 
this specialized hunting strategy and various environmental clues in an 
aerial space remains unknown. Here we report a brain-cell atlas of >30,000 
single-cell transcriptomes from a web-building spider (Hylyphantes 
graminicola). Our analysis revealed the preservation of ancestral neuron 
types in spiders, including the potential coexistence of noradrenergic and 
octopaminergic neurons, and many peptidergic neuronal types that are lost 
in insects. By comparing the genome of two newly sequenced plesiomorphic 
burrowing spiders with three aerial web-building spiders, we found that the 
positively selected genes in the ancestral branch of web-building spiders 
were preferentially expressed (42%) in the brain, especially in the three 
mushroom body-like neuronal types. By gene enrichment analysis and RNAi 
experiments, these genes were suggested to be involved in the learning and 
memory pathway and may influence the spiders’ web-building and hunting 
behaviour. Our results provide key sources for understanding the evolution 
of behaviour in spiders and reveal how molecular evolution drives neuron 
innovation and the diversification of associated complex behaviours.

Spiders are among the most abundant predators with amazing aerial 
web-building behaviour for prey capture1,2. The early ancestors of spi-
ders were probably silk-lined burrow dwellers, and the stereotypical 
aerial web is believed to be evolved during the Jurassic–Cretaceous 
period, along with the flourishing of angiosperms and flying insects3–5. 
Such a remarkable behavioural change must have arisen through the 
evolution of the underlying neural system6–8. Yet advances in under-
standing the mechanisms of how neural systems change over evolu-
tionary timescales have lagged behind our knowledge of behavioural 
evolution in spiders9,10.

The crucial first step for understanding the neural system’s 
evolution is to identify conserved or novel neuron types, which has 
been technically challenging for non-model species11,12. Recently, 

high-throughput single-cell transcriptomic approaches have been 
proven to be a powerful tool for dissecting cell diversity13,14 and compar-
ing homologous cell types15 with minimal prior knowledge. In addition, 
although changes in behaviour are often the most obvious outcome 
of neuronal evolution, all changes must first occur at the DNA level16. 
Integrated multi-omics approaches, including comparative genom-
ics and single-cell transcriptomics, thus are needed to bridge the gap 
between molecular evolution and cellular diversification10.

Here we built a comprehensive atlas of cell types for the adult 
spider brain using Hylyphantes graminicola as a model system and 
sequenced two genomes (Atypus karschi and Luthela Beijing) from 
plesiomorphic burrowing spiders for genome comparisons. We first 
identified spider-specific neurons and common cell types between 
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Expanded peptidergic neuron types in the spider brain
Genes of neuropeptides were significantly (Chi-square test, p < 0.0001) 
over-represented as cluster markers (Extended Data Fig. 5a). Specific 
neuropeptides or combinations of different neuropeptides could 
distinguish a large part of neuron types (Fig. 3a). These include five 
peptidergic neurons (clusters 32, 33 and 38–40) expressing more than 
three neuropeptides and multiple unique peptidergic neurons. The 
proportion of neuropeptide-positive cells (8,979 cells, the average 
numbers of unique molecular identifier (nUMI) of neuropeptides >100) 
seems much larger than that in the single-cell atlas of the Drosophila 
brain (Fig. 3b), which only has ~1,000 cells expressing neuropeptides 
(nUMI > 100) among 57k cells13.

We next explored the role of expanding peptidergic neurons 
in the spider neuron organization by assessing the putative cellu-
lar communication mediated by homologue neuropeptide18,19 using 
CellChat20 (Extended Data Fig. 5b–d). The dominant neuropeptide 
sender and receivers were cluster 40 (Fig. 3c), where Mip-SPR signals 
contributed most to outgoing and incoming signalling (Extended 
Data Fig. 5d). Peptidergic neurons showed either higher outgoing 
(clusters 32, 39) information or higher incoming information (cluster 
33). Different non-neuronal cells communicated with neurons using 
distinct pathways (Fig. 3d). Relative abundance had no significant 
difference in most neuron types between female and male brain sam-
ples (Extended Data Fig. 1f). However, the proportion of peptidergic 
neurons in male spiders was higher than that in female spiders. The 
expression level and communication strength of many neuropeptides 
showed a strong sex-biased pattern (Fig. 3e–g and Extended Data  
Fig. 5e–h). In addition, we found that the genes that were highly 
expressed in males were largely expressed in neuropeptidergic neu-
rons (Fig. 3g), suggesting that neuropeptide signals may be highly 
correlated with sexual behaviour.

Several highly expressed neuropeptides were not captured 
by CellChat, which may regulate neuronal activity in other tissues. 
We then used the τ index21 to define gene specificity by comparing 
24 transcriptomes from multiple tissues. Most neuropeptides are 
strongly expressed in the brain (Extended Data Fig. 5j), but several 
neuropeptides (for example, Calcitonins) and many receptors have 
a low brain specificity (<0.8) or were strongly expressed in other tis-
sue (Fig. 3h–j and Extended Data Fig. 5j). For example, silk glands also 
highly expressed SPR (Fig. 3h). Several studies showed that mated 
female spiders produce egg sacs by tubuliform glands, with stronger 
aggressiveness than virgins22. The higher expression level of SPR in both 
brain and silk glands may suggest that MIP-SPR also plays an important 
role of postmating response in spiders similar to insects23. Together, 
these results suggested a high informative role of neuropeptides in 
encoding cell identity and a global role of neuropeptide signals on cell 
communications in the central nervous system (CNS) and neuron signal 
conduction from the brain to other tissues of spiders.

Genetic drivers for cell diversity in spider
To understand the drivers of neuron diversity in the spider CNS, we 
collected highly enriched marker genes in each neuron type, reflecting 
both high expression (maximum avg_log2FC ≥ 1) and high specific-
ity (only as markers in ≤five clusters). Most highly enriched marker 
genes were homologues shared by invertebrates (Fig. 3k). The top 
three categories of marker genes were neuropeptides, transcription 
factors (TFs) and cell surface protein/secreted protein, accounting for 
40% of the total (Fig. 3l). Gene ontology (GO) analysis showed genes 
are mostly enriched in receptor activity (Fig. 3m) and axon terminus  
(Fig. 3n), as expected. Among the 93 invertebrate-shared genes, 16 were 
lost in Drosophila but were still preserved in spiders and nematodes 
(Fig. 3o). Interestingly, nine of these genes were neuropeptide genes. 
For example, DH31 from Drosophila is considered a homologue of the 
vertebrate neuropeptide calcitonin gene-related peptide24. Spiders 
retained not only DH31 homologous to Drosophila (lost in nematodes) 

spiders and Drosophila. Second, we identified ancient gene retention 
and duplication events in H. graminicola and linked cellular novelty 
with genetic novelty. Third, by utilizing 14 genomes covering the major 
lineages of Arachnida, we tested how gene family evolution and gene 
selection jointly shape neuron specificity and contribute to aerial 
web-building behaviour. Fourth, we used RNAi experiments to test 
the effect of candidate genes on web building. Together, multi-omics 
approaches combined with an RNAi-mediated behaviour assay in this 
study will open a new door to examine the evolution of the unique 
web-building behaviour of spiders.

Results
Transcriptional types of spider brain cell
We performed single-cell RNA sequencing (RNA-seq) of spider brains 
using 10x Genomics technology from adult females (three replicates) 
and males (two replicates) (Fig. 1a and Supplementary Table 1). A total 
of 30,877 cells were retained and 42 cell clusters were obtained (Fig. 1b) 
after quality control (Extended Data Fig. 1 and Supplementary Table 2).  
Among them, 31 clusters were annotated as neurons by examin-
ing the expression of four neuronal markers (brp, elav, CadN, Syt1)  
(Fig. 1c,d and Extended Data Fig. 2). Using multiple non-neuronal markers  
(Supplementary Table 3), we could identify the cell clusters of hemo-
cytes, fat bodies and glial cells (Extended Data Fig. 2). To better illus-
trate the cell subtype of non-neuronal clusters, we re-clustered the 
non-neuronal cells (Fig. 1e,f). Three hemocyte clusters were identified 
using two Hml genes (Fig. 1g). Two Mcad-positive clusters were rec-
ognized as pericerebral adult fat masses (Ahcy, AdennoK) and adult 
fat bodies (ACC, FASN) (Fig. 1g). Glial cells were usually defined by the 
expression of repo, pnt, Bdl or GLaz13,17, but these genes did not have 
high cell type specificity in the spider. We then used glial subtype mark-
ers and identified four glia types (Fig. 1g): glia_1 (moody, Gat, Eaat2), 
glia_2 (SPARC_1), glia_3 (Tsf1, SPARC_2) and glia_4 (SCD5, SEC14L5). In 
addition, using markers related to neurotransmitters (Extended Data 
Fig. 2), we identified the GABAergic (γ-aminobutyric-acid-releasing 
neuron, Gad1, cluster 20), monoaminergic (Vmat, clusters 22 and 39) 
and a large amount of cholinergic neurons (ChAT).

Coexistence of octopamine and norepinephrine in spiders
To characterize cell subtypes of monoaminergic neurons, clusters 22 
and 39 were re-clustered and resulted in 13 distinct sub-clusters (Fig. 2a). 
Using the genes that encode the enzymes for the synthesis of different 
neurotransmitters (Fig. 2b), we identified the major monoaminergic 
subtype: tryptophan hydroxylase (Trh) for serotonin-producing neu-
rons (Fig. 2c), tyrosine decarboxylase (Tdc) and tyramine β hydroxylase 
(Tbh) for octopaminergic neurons and tyrosine 3-monooxygenase (Th) 
and Ddc for dopaminergic neurons. One cluster which only expressed 
Tdc was considered as tyraminergic neurons. Surprisingly, we found 
that cells from sub-clusters 7 and 10 maintained complete norepineph-
rine synthesis pathway, which suggested that spiders may also have 
invertebrate-specific norepinephrine neurons (Fig. 2c,d).

Octopamine and norepinephrine are chemically and function 
similarly in invertebrates and vertebrates, respectively8. The results 
of high-performance liquid chromatography (HPLC) revealed the 
concentrations of norepinephrine and octopamine in the brain of 
H graminicola were 316.7 ± 49.99 pg per head and 481.2 ± 40.48 pg 
per head respectively (Fig. 2e,f). Norepinephrine immunostaining 
showed that these neurons were distributed above the central body 
(CB) of the spider brain (Fig. 2g, brain structure in Extended Data 
Fig. 3). In addition, adrenergic receptors and octopamine receptors 
were expressed in different clusters (Fig. 2h) and different tissues 
(Fig. 2i and Extended Data Fig. 4). The distinctive characteristic of 
noradrenergic and octopaminergic systems in spiders suggested 
that octopamine signalling in invertebrates and adrenergic signal-
ling in vertebrates are not equivalent or homologous at least from 
an evolutionary point of view.
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but also calcitonin homologous to vertebrates (lost in Drosophila)  
(Fig. 3p). This result suggested that the retention of ancestral genes, 
especially neuropeptides, possibly contributes to expanding pepti-
dergic neurons in spiders.

Surprisingly, even though most marker genes have homologous 
genes in Drosophila (Fig. 3k), analysis of the patterns of expression 
similarity between cell clusters from different species only produced 
several conserved clusters (for example, Mip and peptidergic neurons, 
Fig. 4a,b and Extended Data Fig. 6). We found most of the marker genes 
that establish and maintain cell type identity (TFs) or determine wiring 
specificity (for example, cell surface and secreted molecules) belong 
to the multi-copy gene families predicted by OrthoFinder (Fig. 4c). 

Multi-copy gene pairs tend to share fewer TF genes and have lower 
TF weight correlations than single-copy orthologue pairs between 
species (Extended Data Fig. 7), which suggested that high expression 
differences of cells between species may result from expression shifts 
after gene duplications25.

We detected two Hox clusters and substantial 1:2 paralogy (that 
is, two copies in spiders and one in flies) in the spider, indicating 
whole-genome duplication (WGD) in H. graminicola (Extended Data 
Fig. 7). By analysing the phylogenetic topology of the species tree and 
gene trees (Fig. 4d), we found that recent species-specific duplications 
and ancient arthropods or arachnids shared duplications were the 
dominant duplication types for the neuron-specific genes (Fig. 4e). 
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Fig. 1 | A single-cell atlas of the brain from Hylyphantes graminicola.  
a, Scheme of the single-cell study design. b, t-distributed stochastic neighbour 
embedding (t-SNE) plot of the 42 cell clusters generated by grouping the 30,877 
cells obtained from the brains of five biological replicates, colour-coded for 
different cell clusters. Each dot represents one cell. c, Four major cell types in the 
spider brain. d, Markers used for annotating the four major cell types and cell 

clusters in each cell type. e, Uniform manifold approximation and projection 
(UMAP) plot of non-neuron cells. Eleven clusters (0–10) were obtained at a 
resolution 0.4. f, Gene expression heat map of the top 20 marker genes for 11 
non-neuron clusters. Colour scale: blue-green, high expression; light grey, low 
expression. g, Violin plots of the expression of selected markers for 11 non-
neuron clusters.
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Paralogue pairs from species-specific duplication tend to be expressed 
in the same cell types and show higher expression correlations (Fig. 4f). 
In addition, recently duplicated gene pairs also were more associated 
with similar TFs, compared to ancient duplications (Extended Data  

Fig. 7i). Gene network analysis showed a complex TF-neuropeptide 
interaction relationship mediated by novel and duplicated genes in spi-
ders (Supplementary Fig. 9). These results suggested that ancient dupli-
cation events possibly play a more important role in cell divergence.

ThDdcDbh

Ddc

Dbh

2

6

1

0
9

8

7

4

12

3

5

11
10

tSNE_1

tS
N

E_
2

Tdc

a c

Percent expressed

Average expression
2.0

0

0.5

1.0

1.5

25

50

75

Trh

Hyly
phan

tes

Droso
phila

Hyly
phan

tes

Droso
phila

Tryptophan

5-hydroxytryptophan

Serotonin

Trh

Ddc

Tyrosine

Tr
yp

to
ph

an
hy

dr
ox

yl
as

e
Ar

om
at

ic
 L

-a
m

in
o

ac
id

 d
ec

ar
bo

xy
la

se

b

Tyramine

Octopamine

Dihydroxyp-
henylalanine

Dopamine

Norepinephrine

Ty
ro

si
ne

de
ca

rb
ox

yl
as

e

Tdc

Ar
om

at
ic

 L
-a

m
in

o
ac

id
 d

ec
ar

bo
xy

la
se

Ddc

Tyrosine
hydroxylase

Th

D
op

am
in

e
β-

hy
dr

ox
yl

as
e

Dbh

D
op

am
in

e
β-

hy
dr

ox
yl

as
e

Dbh

Monoaminergic neuron markers

ADRB1 Octbeta2R_2

1.01.52.02.5

Average expression Percent expressed
01020304050

Cell cluster

0
0.25
0.50
0.75
1.00

Expression

Serotonin (12)

Dopamine (3)

Norepinephrine (10)

Norepinephrine/tyramine (7)

Octopamine (8)

Octopamine (0)

Tyramine (11)

7
10

7
10

7
10

3

3

3

Norepinephrine
Monoamine levels in spiders

Octopamine

d

e

g

h

Th

lo
g 2(

TP
M

+1
)

pg
 p

er
 h

ea
d

SYNORF1 

Norepinephrine

i

0.80 0.85 0.90 0.95 1.00 1.05 1.10

200

300

400

500

Hylyphantes 

Drosophila

0.80 0.85 0.90 0.95 1.00 1.05 1.10

2,500

0

2,000
1,500
1,000

500

0.80 0.85 0.90 0.95 1.00 1.05 1.10

0

2,500

5,000

In
te

ns
ity

 (m
AU

)

Retention time (mins)

Norepinephrine

f

0

200

400

600

800

0

200

400

600

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

Brain Silk VenomLegs Brain Silk VenomLegs

H = 5.6424, P = 0.1304, df = 3 H = 12.1342, P =  0.006937, df = 3

P = 0.002162P = 0.02035 

CB

CB

50 µm

50 µm

ADB4C

ADA2C

Octbeta2R-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

N
eu

ro
tr

an
sm

itt
er

s
Species Species

Re
ce

pt
or

Tissue Tissue

Receptor

Fig. 2 | Monoaminergic neurons in spider brains. a, Re-clustering of 
monoaminergic neurons. b, Biosynthesis of serotonin from tryptophan 
and biosynthesis of tyramine, octopamine, dopamine and norepinephrine 
from tyrosine. c, Expression of enzymes that synthesize monoamine 
neurotransmitters. Six monoaminergic sub-clusters were identified, 
representing dopaminergic (cluster 3), tyraminergic (cluster 11), 
octopaminergic (clusters 0 and 8), serotonergic (cluster 12) and noradrenergic 
neurons (cluster 10). Colours represent the average expression level of a gene 
and dot sizes represent percentages of cells within each cluster expressing that 
gene. d, Expression pattern of genes that involved in synthesis of dopamine  
(Th and Ddc, red circle) and norepinephrine (Th, Ddc and Dbh, green circle).  
e, Norepinephrine (n = 7 for Hylyphantes, 4 for Drosophila) and octopamine  
level (n = 8 for Hylyphantes, 4 for Drosophila) in Hylyphantes and Drosophila 
head, measured by high-performance liquid chromatography (HPLC). Each  
dot represents the value of a biological replicate. Bars are mean ± standard 
deviation (SD) across replicates. f, Norepinephrine was detected by HPLC.  

The retention time of Hylyphantes, Drosophila and standard norepinephrine 
was present. mAU, milli-absorbance units. g, Anti-synapsin (SYNORF1, 
magenta) and anti-norepinephrine (green) showed the cell bodies (arrow) 
of noradrenergic neurons were distributed above the central body (CB) of 
the spider brain. Four biological replicates were performed to confirm the 
distribution of norepinephrine neurons. Please see the major brain structure of 
spider in Extended Data Fig. 3. h, Expression of representative adrenoceptors 
and octopamine receptors across different cells in the spider brain. i, Expression 
of representative monoaminergic receptors across different tissues in the 
spider (n = 3 for brain, 11 for legs, 3 for silk glands and 3 for venom glands). One 
octopamine receptor (Octbeta2R-2) was highly expressed in the brain and legs, 
and one adrenergic receptor (ADRB1) was highly expressed in peripheral tissues. 
Statistical comparisons were performed by Kruskal Wallis test followed by post-
hoc Dunn’s correction. H is the test statistic for the Kruskal Wallis test and df is 
freedom degrees. Data in bar plots are mean ± SD.
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Function analysis of major cell clusters
Given the large number of neuron clusters in spiders that remain 
unannotated, we performed GO enrichment analysis for the marker 
genes from each cluster (Fig. 4g–k). Cluster 18 was enriched in circa-
dian behaviour (GO:0048512) and learning pathways (GO:0007612). 
In particular, Foxp2, which encodes a TF and plays an important role in 
the development of speech and language in humans and other animals 
with complex acoustic systems (for example, songbirds)26, was distinc-
tively expressed in clusters 18 and 30 (Fig. 4h,i). Unlike the ubiquitous 
expression pattern in Drosophila, the high specificity of this gene in 
certain neurons of spiders suggests a specialized function, potentially 
in complex sound production27,28. In addition, we identified several 
neuron clusters that may involve feeding behaviour (cluster 14) and 
cerebral cortex development (cluster 12) (Fig. 4j).

The mushroom body (MB) is a high integrating centre of the 
arthropod brain and is mainly comprised of Kenyon cells13,29. GO 
functional enrichment found that clusters 8 and 9 were significantly 
enriched in MB formation (Fig. 4j,k). Genes such as bsk, CG17221 and 
rg that are involved in MB development showed significantly higher 
expression levels in clusters 8 and 9 (Fig. 4k). In addition, sNPF, which 
was considered as a marker gene for α/β and γ Kenyon cells30, also 
showed relatively higher expression levels in clusters 8 and 9 (Sup-
plementary Table 4). Notably, cluster 6 is the only cell type enriched in 
long-term memory (LTM) and mRNA splicing (Fig. 4j). Genes in cluster 
6 were enriched for biological processes strongly associated with 
cAMP-mediated signalling (for example, Plc21C and orb2). Particularly, 
rutabaga (rut), a membrane-bound Ca2+/calmodulin-activated adenylyl 
cyclase responsible for the synthesis of cAMP, is highly expressed in the 
MB of Drosophila13 and also restrictedly expressed in clusters 6, 8 and 
9 (Extended Data Fig. 6). Additionally, these clusters highly expressed 
Fasciclin 2 (Fas2) (Extended Data Fig. 6), which is a marker gene of 
Drosophila Kenyon cells13. These results suggested that clusters 6, 8 
and 9 may have similar function to insect MBs.

We then performed immunohistochemistry and in situ hybridiza-
tion to confirm our inference (Fig. 4l–n). In situ hybridization with the 
anti-rhea (marker gene of clusters 8 and 9; Fig. 4l) labelling in probe 
produced a clear signal in the MB-like regions (Fig. 4n). Immunostaining 
showed that the Fas2 was also expressed in the brain MB-like regions 
(Supplementary Fig. 2). Combining the specific expression of MB 
marker genes and the GO term analysis, we suggested the clusters 6, 8 
and 9 possibly are the MB-like clusters.

Genetic and cellular specificity of web-building spiders
To compare the genomic differences between aerial web-building spi-
ders and other spiders, we generated de novo genome assembly of the 
two plesiomorphic burrowing spiders (Atypus karschi and Luthela 
Beijing) based on more than 30× PacBio HiFi read. The genome sizes 
were 876.36 Mb (A. karschi) and 4.09 Gb (L. Beijing), respectively. Our 
two genomes possess high continuity and accuracy (Supplementary 
Table 5), which were similar to other spiders31.

By combining two assemblies with 12 published genomes across 
arthropods, we reconstructed the phylogeny using protein sequences 
derived from 1,213 single-copy genes (Fig. 5a). Our results consistently 
show that three aerial web-building spiders form one clade (Arane-
oidea) and two primitively burrowing spiders are at the basal position 
of spiders. Ancestral spiders, most likely, were freely roaming hunters2, 
and burrows may represent the ancestral foraging construct32. Aerial 
webs evolved during the late Triassic–Jurassic1, coinciding with the 
explosive diversification of flying insects33.

Changes in both web construction and hunting strategy may pre-
dict marked changes in the spiders’ genomes, which has facilitated the 
evolution of spiders at different levels including molecularly, cellularly, 
in body plans and eventually behaviours. To test this hypothesis, we 
performed comprehensive genomic comparisons within spiders and 
their outgroups. We first analysed gene families that changed rapidly 
in gene number during the evolution process and identified expanded 
gene families (Viterbi p < 0.05) and new emergent gene families in each 
clade. We found that gene families expanded in the common ancestor of 
Arachnida (node a) were significantly enriched in neuron-related func-
tions and around one-third of genes were highly expressed in the brain 
(Fig. 5b). In particular, they were significantly enriched in the feeding 
and nociceptive pathway (Fig. 5c), which may contribute to the origin 
of arachnid ancestors’ hunting behaviour. Gene families expanded 
in the common ancestor of spiders (node b) were also significantly 
related to brain or neuron function and especially enriched in taste 
receptor activity (Fig. 5d). Notably, genes expanded at nodes a and b 
are expressed in various neuron clusters and are not biased towards a 
particular neuron type (Fig. 5e). In contrast, gene families expanded in 
the common ancestor of aerial web-building spiders (node c) showed 
significantly lower brain expression bias than that expanded in the 
common ancestor of Arachnida (Fig. 5b). In addition, GO enrichments 
showed that few of these gene families are enriched in neuron-specific 
pathways. These results suggested the involvement of other evolution-
ary drivers in neuron evolution specifically for web-building behaviour.

Therefore, we further identified the positive selection genes (PSGs) 
or rapid evolution genes (REGs) at node c (Supplementary Table 6).  
Around 42% of PSGs are highly expressed in the brain (Extended Data 
Fig. 8), and the majority (38%) were enriched (percentage of cells where 
the gene is detected > 0.25 and average expression > 2) in MB-like 
clusters (clusters 6 and 8 and 9; Fig. 5f). GO enrichment revealed PSGs 
and REGs were enriched in the learning or memory (GO:0007611, 
P = 6.29E−08). Among 144 genes in learning or memory pathway 
(https://biit.cs.ut.ee/gprofiler/gost), 31 were PSGs/REGs and 55 were 
highly expressed in MBs. For example, two PSGs (ben and Scamp) were 
highly expressed in clusters 8 and 9 (Fig. 5f). ben interacts geneti-
cally in both synaptic transmission and LTM formation with Scamp34.  
Mutations of ben and Scamp could disrupt LTM34 and cause a deficiency 
in odour-associated LTM35.

Synaptic change is considered the first step in a series of events 
that link molecular activity at the synapse and the subsequent 

Fig. 3 | Expanding peptidergic neurons and retention of ancestral 
neuropeptide genes in spiders. a, Dot plots showing the expression of 
neuropeptides distinguished 23 neuron clusters. b, Comparison of proportion 
of peptidergic neurons between Hylyphantes and Drosophila13. Significance 
was calculated using two-sided Chi-square test. c, The outgoing and incoming 
interaction strength for each cell inferred by CellChat. The cluster IDs marked by 
red in a and c represent five neuropeptidergic neurons. d, Four representative 
neuropeptide networks in spider brains. Lines of the same colour indicated 
signals sent from the same source cells in each network. Line thickness represents 
communication strength. Non-neuronal cells communicated with neurons using 
distinct pathways. For example, glial cell (cluster 41) and hemocyte cell (cluster 
16), respectively, received signals from clusters 11 (RYa) and 38 (proctolin).  
e, Comparison of the overall information flow of each signalling pathway 
between males and females. Significantly different signalling pathways were 

coloured red (male) and blue (female). f, Male bias neuropeptide network (PK) 
and female bias neuropeptide network (Burs) in spider brains. g, Ucell scores 
of male bias genes and female bias genes. h,i, Neuropeptide receptors that are 
significantly highly expressed in other tissues. Statistical comparisons were 
performed by Kruskal Wallis test followed by post-hoc Dunn’s correction. Data 
in bar plots are mean ± SD (n = 3 for brain, 11 for legs, 3 for silk glands and 3 for 
venom glands). j, Illustration of the neuropeptide receptors that are expressed 
in different tissues. k, The proportion (group-specific or shared genes) of highly 
enriched genes in neuronal clusters. l, Gene category of the highly enriched 
genes in neuronal clusters. m,n, Gene ontology enrichment analysis of the highly 
enriched genes. MF, molecular function (m); CC, cellular component (n); only the 
top 10 were shown, ranked by FDR. o, Sixteen of 93 genes are lost in Drosophila but 
exist in both spiders and nematodes, and nine of these genes are neuropeptide 
genes. p, Violin plots showing the expression of nine neuropeptide genes.
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Fig. 4 | Function annotations of major spider clusters. a, Pairwise 
transcriptional similarity (measured by expression correlation) of cell clusters 
from Drosophila and Hylyphantes. b, Common cell cluster type between 
Drosophila and Hylyphantes. c, Proportion of multi-copy gene families in 
neuronal marker genes. d, Gene trees that represent different gene duplication 
events. e, Number of different duplication events in orthogroups of highly 
enriched marker genes. f, Pearson correlations of expression level (log (read 
count)) of duplicated genes (n = 67, 28, 12, 128 and 74 gene pairs for duplication 
type 1, 2, 3, 4 and 5) based on the single-cell expression matrix. Statistical 
comparisons were performed by Kruskal Wallis test followed by post-hoc Dunn’s 
correction. Data in bar plots are mean ± standard errors (SEM). g, Selected 
known cell markers and their expression in the spider brain. rut: Kenyon cell 
marker; Foxp2: a transcription factor impairs vocal development in humans 
and songbirds; Acj6: optic lobe (T2/T3/T4/T5) marker; Vsx2: optic lobe (Pm3/
Pm4, TmY8) marker; Fer2: Lawf1/2 marker. h, Maximum likelihood (ML) tree 

of Foxp2 genes from six spiders, two insects and other arthropods. Nodes with 
<90% bootstrap support are shown in the tree. Two copies of foxp2 in spiders 
are probably from a duplication event in the common ancestor of spiders 
and scorpions. i, Expressed divergence of two Foxp2 genes in spider and Foxp 
expressed patterns in Drosophila. j, GO enrichment analysis of neuron markers 
from different clusters. Reported P values were from one-sided of Fisher’s exact 
test with FDR-adjusted using the Benjamini–Hochberg method. k, Dot plot 
showing the expression patterns of mushroom body-related genes in clusters 
6, 8 and 9 of the spider brains. l, The expression pattern of gene rhea. This 
gene is a marker gene of clusters 8 and 9. m, Synapsin (anti-SYNORF1, green) 
staining showed the structure of mushroom body (MB) in the spider brains. 
MBL, mushroom body lobes. MBC, mushroom bodycalyx. n, 4′,6-diamidino-2-
phenylindole (DAPI) staining (blue) and RNA fluorescence in situ hybridization 
(FISH) for rhea (green) mark subset of MBs. Two independent biological 
replicates were performed to confirm the expression of rhea in the brain.
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intracellular biochemical cascades and cellular changes to the cogni-
tive aspects of memory36. We found that PSGs/REGs are significantly 
related to dendrite development (P = 0.0062) and synapse assembly 
(P = 0.0284) (Fig. 5g). Interestingly, huntingtin (htt), which is required 
for the formation of the CNS37, is a rapidly evolved gene and highly 
expressed in cluster 6 (Extended Data Fig. 9). This gene is linked to 
Huntington disease38 and involved to long-term synaptic plasticity39. 
In addition, several PSGs/REGs were predicted as htt-interacting pro-
teins (for example, Cip4 and Hip1; Extended Data Fig. 9). Ultimately, 
PSGs/REGs are linked to synapse-specific molecular and biochemical 
changes, including microtubule binding (futsch, P = 0.0001), phos-
phorylation (BOD1, P = 2.21E-10), regulation of synaptic receptors 
(klg, P = 0.0007) and synaptic growth (orb2, P = 0.0067), which results 
in changes of synaptic efficacy that may form the neurobiological 
basis of web-building behaviour.

To test the effects of expression of the PSGs/REGs on spider 
web-building and predatory behaviours, we knocked down the expres-
sion level of ben using RNAi (Fig. 6a–i). Gene ben is both a PSG and a REG, 
and it is highly expressed in mushroom body-like neurons. By compar-
ing the expression level between web-building and burrowing spiders 
using RNA-seq, we found ben showed significantly higher expression 
level in the brain of web-building spiders (Fig. 6b).

More than half of the GFP-RNAi (11/19) spiders build their web 
in the same position 24 hours after we removed all silks, and 6/20 of 

ben-RNAi spiders stayed in their original position. Changes in hub 
position of ben-RNAi were slightly higher than the control (Fig. 6f; 
P = 0.1243). In addition, ben-RNAi spiders showed significantly lower 
prey capture success rate (Fig. 6i; P = 0.0079). We then compared the 
supporting silken line (SSt) length and gumfooted lines (GF) number 
between GFP-controlled spider and ben-RNAi spiders. We found that 
ben-RNAi spiders showed lower GF numbers (p < 0.001) in two days 
after RNAi (Fig. 6h). GFs delay the escape of insects and give a spider 
more time to subdue its prey. Lower number of GF may lead to a lower 
prey capture rate.

Web-building spiders have expanded their niche to previously 
unoccupied aerial spaces, and eventually, spiders displayed a large 
diversity of learning processes, from habituation to contextual learn-
ing, including a sense of sound, space and even numerosity40,41. The 
observed positive selection and rapid evolution of genes in the MBs 
may build the neuronal basis for adaption to habitat shifts and the 
evolution of behavioural changes in web-building spiders.

Discussion
Norepinephrine and octopamine in the spider brain
A striking feature of the nervous system of H. graminicola is the coex-
istence of norepinephrine and octopamine in spiders (Fig. 2). Early 
studies also observed a high level of norepinephrine in the CNS of 
hunting spiders42. Spiders may thus represent one of the ancient 
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organisms where all three transmitters coexist (octopamine, tyramine 
and norepinephrine). Octopamine is involved in various behaviours 
such as flying, egg laying and jumping in insects43. The previous study 
proved that octopamine causes a persistent increase in the excit-
ability of spider mechanosensory neurons44,45, promoting sensitiv-
ity to higher frequencies46. Our transcriptome data revealed that 
octopamine receptors were significantly highly expressed in neuron 

18 (foxp2 positive neuron; Fig. 2g) and in the legs (Extended Data  
Fig. 4). Octopamine thus probably affects spiders’ sensory percep-
tions and plays a potential role in auditory or sound-based commu-
nication systems.

In vertebrates, norepinephrine in the sympathetic system tar-
gets many organs and tissues and causes rapid body reactions, for 
example, triggering the fight-or-flight response47. For spiders, the 
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reported using a two-tailed approach. Ben-RNAi spiders and control spiders 
showed in d–i are coloured in green and pink, respectively.
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fight-or-flight is one of the most common decision-making processes 
spanning their life history40. Such response requires the integrated 
participation of many organs and/or tissues. Interestingly, we found 
that one of the adrenergic receptors was the only gene that was highly 
expressed across many organs/tissues (Fig. 2h). Norepinephrine in 
spiders thus probably preserved a similar function as that found in 
vertebrates. Overall, the difference between octopaminergic signal-
ling and adrenergic signalling in spiders suggested that octopamine 
signalling in invertebrates and adrenergic signalling in vertebrates 
is not functionally equivalent or homologous. More comparative 
studies in molecular evolution and neural circuits are required to 
improve our understanding of the evolution and function of these 
neurotransmitter systems.

Mushroom body evolution in web-building spiders
One of the most important behavioural innovations of spiders is 
the emergence of aerial web-building behaviour in spiders3,48. The 
unique structural characteristics related to web building, such as silk 
and mechanosensory sensilla, have garnered increased interest and 
detailed descriptions. However, only a small number of molecules  
(for example, neuropeptide) or neurons had been thoroughly described 
in spiders49. We found that most PSGs were highly expressed on the 
brain, indicating the key role of CNS in the evolution of spiders beyond 
the structure innovations. The common ancestors of spiders were prob-
ably silk-lined burrow dwellers2. Subsequent changes in constructing 
behaviour (from burrows to web building) and spatial niches (from 
ground to aerial space) expose spiders to more challenging environ-
mental and biological risks3. Spiders evolved many special skills to 
cope with such challenges, for example, web spiders have been shown 
to memorize the characteristics of a single captured prey, such as the 
prey type, size and location, and to change web properties as a function 
of previous prey catches50,51. These experience-dependent modifica-
tions of behaviour usually require learning and memory processes 
that are regulated by the MBs52,53, which is a higher-order, multimodal 
sensory integration centre in the protocerebrum of chelicerates and 
other arthropod lineage54,55.

Interestingly, PSGs/REGs were preferentially expressed in spiders’ 
MB-like clusters. Many of them have been proven to be involved in 
cognition and nervous system development. RNAi experiments proved 
one of these genes (that is, ben) significantly reduced prey capture suc-
cess rate and caused abnormal web-building behaviour. Additionally, 
strong correlations have been established between learning/memory 
and synaptic plasticity56. Many PSGs/ REGs that are involved in the 
development of the nervous system are highly actively expressed in 
MB-like clusters. These genes may contribute to synaptic plasticity 
and memory formation in spiders. Together, the evolution of MBs and 
memory-related genes may build the neuronal basis for the emergence 
of web-building behaviour in spiders.

Genetic drivers of neuron and behaviour innovation in spiders
The emergence of web-building behaviour of spiders has gone through 
at least three key evolutionary steps (Fig. 5a and Extended Data Fig. 10): 
the appearance of chelicerae in the common ancestor of chelicerates 
as a raptorial, predatory animal around 500 million years ago (Ma) 
(ref. 57); development of silk-lined burrow constructing behaviour 
in the common ancestors of spiders around 350 Ma and the evolu-
tion of aerial web-building behaviour in the common ancestors of 
Araneomorph spiders around 200 Ma (ref. 3). Our results suggested 
that a large portion of gene duplications and gene retentions that 
occurred in the common ancestor of chelicerates potentially con-
tributed to the retention of ancestral neurons (for example, peptider-
gic neurons) and early neuronal differentiation (Fig. 3). These early 
genomic changes that are significantly related to feeding behaviour 
and nociception (Fig. 5c), may have promoted their survival in fierce 
attack and counter-attack confrontation58 in the ancestor of arachnids.  

The second key step might optimize sensory perception of prey signals 
through such genetic innovations as the expansion of sensory recep-
tors (Fig. 5d). These changes probably occurred more predominately 
in the peripheral nervous system than the CNS. The expanding genes 
that occurred in the common ancestor of web-building spiders were 
less enriched in the brain (Fig. 5b), and the neuron and behaviour inno-
vation in the third step may have resulted from genes undergoing 
positive selection or rapid evolution. These genes were preferentially 
expressed (~38%) in the MBs and related to the function of LTM and 
synaptic development and may have provided the last critical drive 
for advanced web-building behaviour.

This study suggested that an integrated multi-omics approach, 
including genomics, transcriptomics and single-cell transcriptomics, 
might represent a valuable strategy for evolutionary neuroscience 
discovery, especially for non-model animals. Our study also has several 
limitations. First, the cell number in this study may be insufficient to 
cover all neuron types. The expression characters of the rare cluster 
were potentially less reliable. The additional dataset with more cell 
numbers and more experiments could fill some of the gaps. Second, it 
was still difficult to deeply understand the neuronal circuits underlying 
the web-building behaviour. Advanced gene editing and neurobiologi-
cal technology59 will greatly improve our understanding of spider 
web-building behaviour.

Methods
Animals for single-cell sequencing
Adult samples of the aerial web-building spider (Hylyphantes gramin-
icola) were collected from Anci district, Langfang, Hebei, China 
(39° 31.90’ N, 116° 38.15’ E) between September and October 2020. Col-
lected spiders used for brain dissection were housed individually in a 
glass tube (Φ12 mm × 80 mm) at temperature- and humidity-controlled 
condition (24–26 °C and 50–60% humidity) in a 14 h–10 h light–dark 
cycle. No ethical approval was needed because spiders used in this 
study are common species with huge population size in the field and 
are not threatened species.

Brain dissection and single-cell dissociation
Five single-cell libraries (two from males and three from females) 
were constructed for 10× single-cell sequencing. For each 
library, brains (35–40 mixed-aged adults) were dissected in cold  
1× formaldehyde-phosphate-buffered saline (PBS) solution using  
fine forceps and transferred to a tube containing MACS Tissue Stor-
age Solution. The brain tissue was dissociated into single cells using 
the Adult Brain Dissociation kit (Miltenyi Biotec number 130-107-677) 
with these modifications: (1) after termination of the gentleMACS 
programme, the C-tube with the sample was incubated at 37 °C for 
10 minutes; (2) all centrifugations were performed at 220 G for 8 min 
at 4 °C; (3) myelin debris and erythrocyte removal steps were omitted 
to prevent loss or bias in the recovered cell yields.

10× genomic single-cell sequencing
Single-cell transcriptomic amplification and library preparation 
were performed at Capitalbio Technology Corporation (Beijing, 
China). Libraries were made using the Chromium Single Cell 3’ v3 
kit from 10X Genomics. Briefly, spider brain single cells were sus-
pended in 0.04% BSA–PBS. Cells were added to each channel to 
capture the transcriptomes of ~5,000 to 10,000 cells per sample. Cel-
lular suspensions were loaded on a GemCode Single Cell Instrument  
(10X Genomics) to generate single-cell gel beads in emulsion (GEM). 
GEMs and scRNA-seq libraries were prepared using the GemCode Sin-
gle Cell 3ʹ Gel Bead and Library Kit (10X Genomics) and the Chromium 
i7 Multiplex Kit (10X Genomics), according to the manufacturer’s 
instructions. Libraries were sequenced on an Illumina Novaseq6000 
with a sequencing depth of at least 100,000 reads per cell with 
pair-end 150 base pair (PE150).
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The CellRanger pipelines v4.0.0 provided by 10X Genomics were 
used to process the sequenced libraries (alignment, barcode assign-
ment and UMI counting). The reference genome was built based on 
the spider genome released on ScienceDB Digital Repository: https://
doi.org/10.11922/sciencedb.01162. The number of cells detected in 
the experiment was determined by CellRanger based on the number 
of barcodes associated with cell-containing partitions and estimated 
from the barcode UMI count distribution. A digital expression matrix 
was obtained for each experiment with default parameters. From a 
total of 2,192,024,585 reads, 82.2% were mapped to the H. graminicola 
genome, giving an approximate sequencing depth of 60,000 reads 
per cell (ranging from 31,483 to 111,407). The median number of genes 
per cell ranged from 734 to 1,258 (average 1,070). Other sequencing 
matrices of the spider brain (five samples) of 10X Genomics scRNA-seq 
are summarized in Supplementary Table 1.

Raw data processing and quality control
Seurat pipeline v4 (ref. 60) was used to perform basic processing and 
visualization of the scRNA-seq data in R v4.0 (ref. 61). The initial dataset 
contained 40,233 cells from five samples (Supplementary Table 1). Cells 
with high mitochondria expression levels are considered low-quality 
cells. For instance, cells with mitochondrial RNA > 20% were removed 
in studies of the Drosophila larval brain62. However, the proportion 
of mitochondrial RNA in our five samples is about 30%. We could not 
simply specify a parameter set. Therefore, we first used all cells to 
process and visualize the initial scRNA-seq data using the vst method 
in Seurat. Clusters were identified by the ‘FindClusters’ function with a 
clustering resolution of 2 (see below for details on Seurat cell cluster-
ing). We obtained 44 clusters and selectively removed entire clusters 
with the majority of cells having ≥40% mitochondrial RNA and under 
1,000 detected UMIs (Extended Data Fig. 1)63. We then set different 
mitochondrial percentages: 20%, 30%, 40% and 50% to check if the 
remaining cells still can generate specific clusters with high mito-
chondrial percentages. Finally, we used the following parameters for 
the remaining individual cells to exclude outliers: minimum percent-
age mito = 0, maximum percentage mito = 40%, minimum number of 
UMI = 500, maximum number of UMIs = 60,000, minimum number of 
nGene = 250 and maximum number of nGene = 3,000. Additionally, 
genes expressed in at least three cells were considered for the analysis. 
More stringent criteria decreased the number of cells included without 
further improving the clustering. In the final dataset, a median of 1,375 
genes and 3,777 unique molecular identifiers (UMIs) per cell were 
obtained across five replicates (Supplementary Table 2).

Seurat cell clustering
After initial quality control, a total of 30,877 cells were retained. We 
then used the R package Seurat for normalization, integration, dimen-
sion, reduction, clustering and visualization. Retained cells from each 
sample were log normalized and scaled with LogNormalize. Variable 
genes were identified with the FindVariableFeatures function (selec-
tion.method = ‘vst’, nfeatures = 2,000). Sample integration and batch 
removal were performed using Harmony package v0.10 (ref. 64). Clus-
tering and visualization of the data were accomplished using Seurat’s 
linear dimension reduction (principal components analysis, PCA) 
followed by t-distributed stochastic neighbour embedding (t-SNE). 
Clusters with only one cell were removed. Cells were clustered using 
a resolution from 0.2 to 6 (Supplementary Table 2). A comparison of 
different cluster resolutions was evaluated with the clustree package 
v0.5.0 (ref. 65). Cluster resolutions above 2 yielded few new clusters 
and resulted in 42 clusters (Extended Data Fig. 1 and Supplementary 
Table 2). DecontX66 and DoubletFinder67 were used to estimate RNA 
contamination and detect doublet for each cluster (Supplementary 
Figs. 5 and 6). Differentially expressed genes were found using the 
FindAllMarkers (min.pct = 0.2, only.pos = true) function with Wilcoxon 
Rank Sum test (Supplementary Table 4).

Spider gene identification
The cell type can be identified by overlaying the expression of specific 
marker genes, requiring previous knowledge of gene expression in 
specific tissues or cells. This prior information is mostly from model 
species (for example, Drosophila). The spider (H. graminicola) genes 
were annotated against the Drosophila protein sequences by the recip-
rocal best hit method using BLASTP in BLAST v2.10.0+ (E-value < 1e−5) 
(ref. 68). This step identified 5,977 homologous genes between flies 
and spiders.

To account for gene paralogues and gene duplication events, an 
aggregated table of ‘meta-genes’ was created69. Each meta-gene may 
include all genes homologous to one fly gene. For this purpose, we 
clustered gene families using OrthoFinder v.2.3.118 (ref. 70) under the 
default parameters (Inference of orthogroups and pairwise orthology 
relationship sections). This analysis identified 8,026 orthologues 
between the spider and the fly.

Gene functions were assigned according to the best match to 
the databases of National Center for Biotechnology Information 
non-redundant nucleotide database (NCBI-NR, http://www.ncbi.nlm.
nih.gov) and Swiss-Prot (http://www.uniprot.org/)71 by protein–protein 
Basic Local Alignment Search Tool (BLASTP, E-value ≤ 1e−5) and the 
Kyoto Encyclopedia of Genes and Genomes72 using Diamond v0.8.22 
(E-value ≤ 1e−5) (ref. 73). Protein domain identification and Gene Ontol-
ogy (GO) (http://geneontology.org/) analysis were performed through 
InterProScan v5.32–71.0 (ref. 74). Signal peptide prediction was per-
formed using SignalP v6.0b (ref. 75). Homologous transcription factors 
(TFs) were matched against Drosophila using BLASTP. Novel TFs in the 
spider genome were predicted using DeepTfactor76.

Cell type annotation
We used three methods to determine cell type for each cell cluster: 
marker genes, expression similarity across species and GO enrichment:

We first used known cell type-specific/enriched marker genes of 
Drosophila that have been previously described to determine cell type 
(details in Supplementary Table 3). This includes neuronal markers 
(brp, nSyb, elav, Syt1 and CadN), Glia markers (moody, Eaat2, Gat and 
Gs2), fat body markers (FASN1, ACC).

We then compared the expression similarity of each cluster 
between the fruit fly and spider using two approaches: (1) correlations 
between mean expression profiles among clusters77 and (2) marker 
similarity25. Both methods can reduce noise stemming from biological 
or technical variation across individual cells and treats each cluster as a 
unit of comparison. For the correlation method, differentially expressed 
genes for fly13 and spider were identified using Seurat FindAllMarkers. 
For each fly–spider cluster comparison, these lists were intersected to 
identify a common set of BRH genes. Average cluster expression profiles 
were subsetted and transformed for this common gene set. Cluster 
expression correlations were calculated using Spearman’s correlation 
coefficient. For the marker similarity method, we also identified the 
marker gene list for each cluster from different species. These lists were 
then used to calculate the marker similarity for each cluster between the 
fly and spider following the methods from Shafer et. al25. The correla-
tions matrix and marker similarity matrix were hierarchically clustered 
using Euclidean distances and the ‘ward.D’ agglomerative method.

GO functional enrichment analysis of marker genes that were 
specific to each cell was performed using R package clusterProfiler 
v3.18.1 (ref. 78). The P value was adjusted by Benjamini–Hochberg false 
discovery rate (FDR), and terms with an adjusted P value of <0.05 were 
recognized as significantly enriched. REViGO (http://revigo.irb.hr/) 
was used to cluster the over-represented GO terms and construct the 
interactions of terms79.

Cell–cell communication mediated by neuropeptides
We created a neuropeptides and neuropeptide receptors list from the 
gene annotation results. The ligand–receptor pairs of H. graminicola 
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were defined based on the known neuropeptide–receptor pairs in 
Drosophila18,19. Potential cell–cell interactions mediated by neuro-
peptides in different cell types were inferred using CellChat v1.1.3 
(ref. 20), a tool that can quantitatively infer and analyse intercellular 
communication networks from scRNA-seq data. We first used all five 
samples and computed ligand–receptor interaction strengths for all 
pairs of cell types following the official workflow. For comparison of 
cell–cell communication between males and females, we ran each data-
set (females and males) separately and merged two objects. Sexual dif-
ference in interaction strength for each signal pathway was estimated 
by the Wilcoxon test (P < 0.05) in CellChat. Cell clusters with significant 
changes in sending or receiving signals between male and females and 
the overall information flow of each signalling pathway were identified 
following the official workflow.

Identification of putative GRNs using GENIE3
We used GENIE3 v3.16 to identify TFs that were predictive of the expres-
sion of terminal effector genes associated with the functions of brain 
neuron diversity80,81. Briefly, the single-cell expression matrix was sub-
jected to GENIE3 algorithm. Genes that were identified as cell markers 
were listed in the target genes list. The lists of TFs and their correspond-
ing weights for each target gene were used in downstream analysis. 
Gene co-expression networks for each TF were constructed by the 
GENIE3 package. Only weight values more than 0.1 and the top 50 tar-
gets for each TF were retained and plotted by Cytoscape v3.7.2 (ref. 82).

Whole-genome duplication event analysis of H. graminicola
We used pipelines in the wgdi package v0.1.6 (https://pypi.org/project/
WGDI) to perform Colinear block analysis83. First, the putative paralo-
gous and orthologous gene pairs within the genome were searched 
using BLASTP (E-value < 1e−5) with a maximum of 25 alignments. The 
maximal collinearity gap length between genes was set as 50. Then, 
synonymous substitutions (Ks) values of identified colinear gene pairs 
were calculated using YN00 v4.9 (ref. 84). Third, Gaussian density fit-
ting was performed to estimate the probability density distribution 
for median Ks. We also used MCScanX in TBtools v0.665 (ref. 85) with 
default parameters to identify inter-chromosomal colinear blocks 
of H. graminicola. MCScanX was also used to classify genes into five 
categories, namely singletons (that is, genes without any duplicate), 
dispersed (duplicates occurring more than ten genes apart or on differ-
ent scaffolds), proximal (duplicates occurring on the same scaffold at 
most ten genes apart), tandem (consecutive duplicates) and segmental 
(block of at least five collinear genes separated by less than 25 genes 
missing on one of the duplicated regions).

We further identified ten highly conserved Hox genes in arthro-
pods, which are considered to play important roles in the common 
ancestor of panarthropod86. HOX protein sequences of four species 
(Daphnia magna, Drosophila melanogaster, Parasteatoda tepidariorum 
and Tribolium castaneum) were downloaded from NCBI and Swiss-Prot 
databases. We performed BLASTP (E-value < 1e−10) to search for the 
candidates. For ensuring the accuracy of identification, we used MAFFT 
(multiple sequence alignment software v7.455) with the G-INS-i model 
(iterative refinement method with consistency and WSP scores)87 to 
observe the clustering between the obtained genes and the down-
loaded HOX genes. The obtained gene clusters were further manually 
checked in the NCBI-NR database. Duplicated HOX gene clusters sup-
ported the signature of WGD.

Genome sequencing, assembly and annotation for two 
plesiomorphic burrowing spiders
Two spiders (Atypus karschi and Luthela Beijing) were selected for 
genome sequencing and comparative genomic analysis because they 
represent the basal lineage of spiders with the primitive hunting behav-
iour (burrowing). Samples of the purseweb spider (A. karschi) were 
collected from the bamboo forest Tongji, Chengdu, Sichuan, China 

(31.18° N, 103.84° E). Samples of the segmented spider (L. Beijing) were 
collected from Purple Bamboo Park, Haidian district, Beijing, China 
(39.94° N, 116.32° E). All samples were starved and reared in the lab for 
more than 72 hours at room temperature. Genomic DNA for short- and 
long-read sequencing was isolated from the cephalothorax of adult 
spiders using the Qiagen Blood and Cell Culture DNA Kit (QIAGEN).

The high-fidelity libraries were sequenced on the PacBio Sequel II 
system in Circular Consensus Sequencing mode at Novogene Technol-
ogy Co. PacBio reads were first assembled using wtdbg2 v2.5 (ref. 88). 
The contigs of the assembly were polished by Racon v1.4.17 for three 
rounds (https://github.com/isovic/racon) using long reads and then by 
NextPolish v1.4.0 (rerun = 2) using short reads89. Gene structure annota-
tion was performed by braker-2.1.6 (ref. 90), combining Augustus v3.3 
(ref. 91) and GenomeThreader v1.7.3 (ref. 92). For transcriptome-based 
annotation, RNA-seq data were mapped to the reference genome using 
STAR v2.7.3a (https://github.com/alexdobin/STAR). We then identified 
the coding region of transcripts using transdecoder v5.5.0 (https://
github.com/TransDecoder/TransDecoder). All of the predicted gene 
models above were then combined to create a consensus gene set using 
EVidenceModeler v1.1.1 (ref. 93).

Behavioural classification of six spiders in this research
Coding spider foraging strategies is notoriously complex and contro-
versial. Here we simplify the foraging strategies of spiders in this study 
based on web architectures and their habitats3: (1) aerial web-building 
spiders—spiders that use suspended webs that are architecturally 
stereotyped or relatively amorphous in open aerial habitat, including 
foliage of shrubs, herbs and trees; (2) burrowing spiders—spiders that 
live in a burrow with silk lines or rudimentary webs, and these ‘webs’ 
have few to no direct junctions between discrete silk threads; (3) hunt-
ing spiders—no prey capture webs.

Inference of orthogroups and pairwise orthology 
relationships
We inferred orthogroups using 14 species, including Nematoda, 
Caenorhabditis elegans, two insects (Apis mellifera and Drosoph-
ila melanogaster), the horseshoe crab Limulus polyphemus, three 
non-spider Arachnida (the opiliones Phalangium opilio, the tick 
Hyalomma asiaticum and the mite Tetranychus urticae), two plesio-
morphic burrowing spiders (Atypus karschi and Luthela sinensis), one 
plesiomorphic hunting spider (Dysdera sylvatica) and three aerial 
web-building spiders (Argiope bruennichi, Parasteatoda tepidariorum 
and Hylyphantes graminicola) with OrthoFinder (-M msa -S blast -T 
iqtree). Briefly, protein sequences of each species were assigned to 
homologous families using BLASTP and the clustering algorithm 
MCL94. Multiple sequence alignments were finished using MAFFT with 
default parameters. We then built orthogroup trees and a species tree 
using IQTREE v1.6.12 (ref. 95).

After inferring orthogroups, we predicted pairwise orthology 
relationships and characterized the relative times of duplication events 
for each gene family based on the gene tree topology from IQTREE. 
We defined five scenarios that corresponded to different duplication 
events96: Hypothesis 1, H. graminicola-specific duplication events; 
Hypothesis 2, common duplication in the most recent common ances-
tor of spiders; Hypothesis 3, common duplication in the most recent 
common ancestor of spiders and scorpions (MRCA_spider_scorpion); 
Hypothesis 4, common duplication in the most recent common ances-
tor of Arachnida (MRCA_Arachnida); Hypothesis 5, common ancient 
duplication in the most recent common ancestor of spiders and insects 
(MRCA_spider_insects).

Gene expression matrix from different tissues
Twenty-four RNA samples from eight tissues, including the venom 
gland, brain, silk glands, abdominal tissue without silk glands and 
leg pairs I–IV from our previous study31 were used to determine the 

http://www.nature.com/natecolevol
https://pypi.org/project/WGDI
https://pypi.org/project/WGDI
https://github.com/isovic/racon
https://github.com/alexdobin/STAR
https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder


Nature Ecology & Evolution | Volume 7 | December 2023 | 2125–2142 2137

Article https://doi.org/10.1038/s41559-023-02238-y

tissue-specific expression pattern for each gene. Tissue-specific genes 
for each tissue were identified using the τ index97. Briefly, the gene 
expression levels in the detected tissues were quantified as the tran-
scripts per million (TPM) using the following formula: TPM = (CDS 
read count × mean read length × 106) / (CDS length × total transcript 
count). We then used the expression matrix to calculate τ tissue-specific 
expression indices as follows:

τ =
∑n

i=1(1 − X̂i)
n − 1 ; X̂i =

Xi
max
1≤i≤n

(Xi)

Xi is the expression of the gene in tissue i, n is the total number of tis-
sues. The values of τ range between 0 and 1. Values close to 1 indicate 
completely tissue specific, and values close to 0 indicate ubiquitously 
expressed genes. We classified genes as cellular-specific expressed 
when τ > 0.8.

Identification of neuron-specific genes in the spider brain
To better understand the forces that drive gene expression diversity in 
the spider nervous system, we identified the most highly enriched and 
highly cellular-specific genes in CNS that are related to neuron cluster-
ing and neuron type definition using two methods: marker-dependent 
and cellular specificity indices. We selected neuron-specific genes 
from the marker gene list of neuron clusters using two thresholds: 
relatively higher expression (maximum avg_log2FC ≥ 1) and high speci-
ficity (only as markers in ≤ 5 clusters). We defined the orthogroups as 
neuron-specific orthogroups if any gene in this group was listed in the 
neuron-specific gene set.

Calculation of expression divergence of duplicated genes
To explore whether duplicated genes contribute to neuronal diversity, 
we determined the expression divergence of duplicated genes for the 
neuron-specific orthogroups. First, we tested whether duplicated 
genes are expressed more frequently in the same cell type than ran-
domly selected gene pairs; second, we tested whether duplicated 
genes showed a higher correlation of mean expression level across 
different cells than randomly selected gene pairs; third, we tested 
whether duplicated genes shared more similar TFs (calculated as the 
number of shared TFs from the top 25 TFs resulted from GENIE3) than 
randomly selected gene pairs; fourth, we tested whether duplicated 
genes showed higher TF weight correlations than randomly selected 
gene pairs25.

Gene family expansion and gene selection analyses
To explore the molecular and neuron innovation accompanying aerial 
web-building and hunting behaviour, we first searched the expand-
ing gene family and selective events that are specific to the aerial 
web-building spider lineage.

To evaluate gene family expansion and contraction, we used CAFÉ 
v5.0 (ref. 98) with default parameters, which applies the results of 
orthologue groups from the OrthoFinder programme. The time tree 
was constructed using MCMCTree framework in PAML (Phylogenetic 
Analysis Using Maximum Likelihood) v4.9j (ref. 99). The gene family 
was regarded as significantly expanded or contracted (Viterbi P ≤ 0.05) 
when the copy number of focused branch lineages was higher or lower 
than its ancestral branch lineage, respectively. Gene orthogroups with 
>100 copies were filtered out. We performed positive selection analy-
sis with six spider species including three aerial web-building spiders, 
two plesiomorphic burrowing spiders and one web-less hunting spi-
der. We obtained 5,680 best-to-best hits as orthologous genes, which 
were shared by six species and used for positive selection analysis. 
Orthologous proteins were aligned by MAFFT. Poor alignments were 
trimmed with trimAL v1.4.rev15 (-gt 0.9 -st 0.001) (ref. 100). We used 
branch-site likelihood ratio tests in CODEML package of the PAML 
to identify positive selection genes (PSGs) for the ancestral branch 

of aerial web-building spiders. The branch-site model allows omega 
to vary both among sites in the protein and across branches on the 
tree, aiming to detect positive selection affecting a few sites along 
particular lineages. We performed the test by comparing two models: 
the null model (using the settings model = 2, NSsites = 2, omega = 1) 
and the alternative model (model = 2, NSsites = 2). The likelihood ratio 
test has degrees of freedom = 1. We used the F3 × 4 codon model of 
Goldman and Yang101 to calculate the equilibrium codon frequencies 
from the average nucleotide frequencies at the three codon positions 
(CodonFreq = 2). We obtained FDR with the Benjamini and Hochberg 
method102. Genes with FDR < 0.05 and the ratio of non-synonymous 
to synonymous substitutions (dN/dS) in the foreground >1 were con-
sidered PSGs.

To examine the rapidly evolved genes (REGs), branch model 
(model = 2, NSsites = 0) was used to detect ω of foreground branch 
(ω0), average ω of all the other branches (ω1) and the mean of whole 
branches (ω2). Then a χ2 test was used to check whether ω0 was sig-
nificantly higher than ω1 and ω2 under the threshold FDR < 0.05, which 
hinted that these genes would be under rapid evolution103.

We also detected individual sites under positive selection for 
the ancestral branch of web spiders using 5,680 orthologous genes.  
A mixed-effects maximum likelihood approach (MEME) was employed 
by using the MEME framework104 in Hyphy v2.5.25 (http://www.hyphy.
org/)105 with default parameters. MEME allows the distribution of ω to 
vary from site to site (the fixed effect) and also from branch to branch 
at a site103. This programme showed the significance of the episodic 
positive selection for each site using a likelihood ratio test.

Differential expression analyses of spider brains
To identify differential expressed genes across burrowing and 
web-building species, the brain transcriptome samples of two 
web-building spiders, Hylyphantes graminicola and Parasteatoda 
tepidariorum, and two burrowing spiders, Atypus karschi and Luthela 
Beijing, were mapped to their trimmed-orthologues. For each species, 
the expression level matrix of orthologues was constructed using 
RSEM v1.3.1 (ref. 106). We performed differential expression analysis 
using edgeR package v3.26.8 (ref. 107) with a FDR of 0.05 and a fold 
change of 4.

Linking molecular evolution and neuron innovation
We next focused on the expanding gene family and PSGs/REGs that are 
specifically expressed in the spider brain. We calculated the average 
expression level and percent of expression for each cell cluster using 
the AverageExpression function (idents = ‘cell.type’). Using DotPlot 
function (pct.exp > 25, avg.exp > 2) in Seurat, we manually checked 
gene expression patterns for each gene and identified the major cell 
type that expressed the candidate genes. The potential functions of 
expanding gene family/PSGs in each cluster were examined by GO 
enrichment.

Sex-biased expression and sex-specialized cell types
For the sex-bias analysis, we first obtained the gene expression matrix 
using the AverageExpression function (idents = ‘sex’) in Seurat. Next, 
we found the sex-bias genes using FindMarkers function for all sample 
pairs (for example, find the different expression gene between male_1 
and female_1 using the parameters (min.pct = 0.25, ident.1 =‘male_1’, 
ident.2 = ‘female_1’, only.pos = F) based on the non-parametric  
Wilcoxon rank sum test. Only genes that showed significant expression 
differences in all comparisons were considered as sex-bias genes. We 
searched for sex-biased genes for each cell using the same strategy. We 
then applied the UCell package v2.2 (ref. 108) to evaluate the UCell sig-
nature score of male-biased and female-biased genes for each cell using 
the AddModuleScore_UCell function. The UCell score is calculated as the 
difference between the average expression of the genes in the module 
score and the genes in the background for each cell. Scores close to zero 
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indicate a similar expression, positive scores indicate higher expres-
sion and negative scores indicate lower expression of the genes in the 
gene set than the background genes. Gene scores for each cluster were 
calculated using AverageExpression (features = signature.names) and 
visualized using dotplot by ggplot2 package v3.3.5 (ref. 109).

Measurement of monoamine transmitters
The octopamine (OA) and norepinephrine (NE) concentrations were 
measured via reversed phase UltiMate High Performance Liquid Chro-
matography with electrochemical detection (UHPLC-ECD, DIONEX 
UltiMate 3000, RS Pump)110.

Immunostaining of spider brains
Immunostaining was conducted following similar procedures for  
Drosophila adult brain staining111. Briefly, spiders were dissected in 
0.015% PBST (phosphate-buffered saline with 0.015% Triton X-100) 
and fixed with 4% PFA at room temperature on a shaker for 20 min. 
Samples were then washed with 0.5% PBST for 4 × 15 min. After wash-
ing, samples were blocked by 5% goat serum in 0.5% PBST at room 
temperature on a shaker for 30 min. The primary antibody and its 
dilution ratio were adopted from previous publications112,113. Mouse 
anti-SYNORF1 and anti-Fasciclin II antibody was purchased from Devel-
opmental Studies Hybridoma Bank and diluted to 1:1,000 in the block-
ing buffer. Samples were treated with the primary antibody for 48 h 
and then washed for 4 × 15 min. The secondary antibody Alexa Fluor 
488 anti-Mouse (Invitrogen A11001) was used at 1:250, and samples 
were incubated for 72 h followed by similar washing procedures. 
Rabbit anti-norepinephrine (NE) antibody (immusmol, IS1042) with 
STAINperfect immunostaining kit A (SP-A-1000) was used for NE 
immunolabeling. An Olympus FV1000 microscope with a 20× air lens 
(NA = 0.8) was used for confocal imaging.

RNA in situ localization
Spider cRNA probes were prepared using T7 promoter sequence 
(Supplementary Table 10). In vitro transcription of DNA template 
was carried out using thermocycler followed by RNA probe synthesis 
using DIG RNA labelling kit using manufactures protocol (Roche 
Diagnostics). In brief, spider brains were fixed in 4% paraformalde-
hyde in for 20–60 min. The brains were washed using 1× PBS with 
0.1% Tween 20 (PBST). Then it was permeabilized using proteinase 
K (1 μg ml−1) and fixed again with 4% PFA. Samples were incubated in 
hybridization solution at 50 °C for 1 h. A DIG-labelled cRNA probe 
was used and heat-denatured by incubating it for 5 min at 80 °C. 
The brains were then washed using wash buffer and were blocked 
with 5% BSA blocking solution at RT for 1.5 h followed by incuba-
tion with anti-Digoxigenin-FITC antibody (21H8) (FITC) (ab119349) 
(1:500) at 4 °C for overnight. Brain samples were washed four times 
for 15 min with DIG wash buffer (Roche Diagnostics) and ready for 
confocal imaging.

RNAi experiment
Candidate gene. Gene ben is both a positively selected gene and a 
rapidly evolving gene, and it is highly expressed in mushroom body-like 
neurons. The expression levels were similar across different develop-
mental stages. The dsGFP was synthesized and used as a control.

Experimental subject. Wild-type adult spiders were obtained from 
the greenhouse in the Institute of Zoology, Chinese Academy of Sci-
ences. The spiders were then housed individually in a plastic box 
(50 mm × 50 mm × 40 mm) at temperature- and humidity-controlled 
conditions (24–26 °C and 50–60% humidity) in a 14 h/10 h light–dark 
cycle. Offspring (subadult females) of wild spiders were used for experi-
ments. Experimental subjects were caged individually from second 
instar juveniles to subadults. The sample size of each measured behav-
iour and fitness trait is shown in Supplementary Table 8.

RNAi in vivo. For RNAi, 495 base pair fragments of ben were PCR ampli-
fied from cDNA. The T7 promoter sequence attached primers were used 
for PCR amplification of the double-stranded RNA (dsRNA) templates 
using HiScribe T7 (NEB) according to the manufacturer’s instructions. 
Synthesized dsRNA was quantified with a Nanodrop 2000 (Thermo 
Fisher). The final concentration of double-stranded RNA used for injec-
tion was 5µg µl−1. Before injection, the spiders were anaesthetized with 
CO2. A CellTram air microinjector (Eppendorf) was used for injection.

Validation of knockdown. The knockdown effects were validated 
with RT-qPCR after 24 h upon dsRNA injection using three techni-
cal replicates per gene per sample. The whole body of spiders was 
collected, and total RNA was extracted using RNAiso Plus (Takara) 
according to the manufacturer’s instructions. Reverse transcription 
was performed by using HiScript III RT SuperMix for qPCR (+gDNA 
wiper) (Vazyme Biotech). Quantitative real-time PCR was performed 
using Taq Pro Universal SYBR qPCR Master Mix (Applied Biosystems). 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used 
as a reference housekeeping gene, as past studies have shown it has 
relatively similar expression across all tissues114. The primers for qPCR 
were listed in Supplementary Table 10.

Behavioural assay. We tested the effects of the expression of the 
candidate gene (ben) on spider web-building and predatory behaviour. 
We used four indicators to test behavioural change after RNAi: in the 
first experiment, the spiders usually stay in the hub of their web. We 
removed all silk/webs in the plastic box after 24 h upon dsRNA injec-
tion and observed whether they would build webs in the same posi-
tion. Using an in-house Python script-based method (Supplementary 
Code), the length of the SSt (supporting structure, a silken line) and 
the number of GF (Gumfooted lines, threads with viscid basal portions) 
were also used to quantify the web quality. In our second experiment, 
we dropped a fruit fly on the spider’s web and allowed the spider to 
perform normal prey capture behaviour with each prey item (locate 
prey, extract it from the web, wrap it in silk, secure it to the hub) and eat. 
If the fly broke free from the web within 10 min, we dropped another 
fruit fly on the web. After 10 min, we removed all the live fruit flies. We 
fed the spider once per day and recorded how often the spider captured 
the prey each day.

Statistical analyses
Kruskal Wallis test with Dunn’s multiple-comparison post-hoc test 
was used to compare groups of data. Non-parametric two-tailed 
Mann–Whitney U tests were used to compare two distributions. All 
measurements were taken from independent samples. All graphs and 
statistical analyses were generated using GraphPad Prism software 
unless otherwise stated.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw and processed data of single-cell transcriptomes of spider 
brains are deposited into the GEO database (with accession code 
GSE241696); all raw transcriptome data have been deposited into 
the NCBI Sequence Read Archive (SRA) database with a BioProject 
accession PRJNA934409 and a BioSample accession SAMN33275591–
SAMN33275618 and SAMN36403531–SAMN36403537. Raw DNA 
sequencing data of Luthela Beijing and Atypus karschi are deposited 
into the Genbank with BioProject accession: PRJNA1008782 and 
PRJNA1010389. The genome assemblies of Luthela Beijing and Atypus 
karschi were available in Science Data Bank: 31253.11.sciencedb.07403. 
The functional annotations of protein-coding genes, metadata, results 
from genetic analysis and GO lists and other source and processed data 
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are available in the Supplementary Data. Source data are provided 
with this paper.

Code availability
Data analysis scripts and code are available via Figshare (https://doi.
org/10.6084/m9.figshare.22303228)115.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality control of the single-cell atlas from spider 
brain. a, t-SNE plot of the 44 cell clusters generated by grouping the 40,233 cells 
obtained from brains of five biological replicates. Color-coded for different cell 
clusters. Each dot represents one cell. b, The percentage of reads that map to the 
mitochondrial genome (percent.mt) in each cell cluster. Clusters 7 and 12 with 

>50% mitochondrial percentage were removed in subsequent analysis.  
c, Clustering and mitochondrial percentage under different parameter settings.
at resolution 2.0. d, UMAP plot of the 42 cell clusters generated by grouping the 
30,877 cells in the final dataset. e, Comparison of different cluster resolutions.  
f, The relative abundance of each cell type in different sex.
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Extended Data Fig. 2 | Violin plots of the expression of markers for different 
cell clusters. Based on these markers, we could identify the cell clusters of 
neurons (clusters 0-15, 17-20, 22, 23, 26, 30-33,37-40), hemocytes (clusters 16, 27, 

25, 36), fat body (clusters 24), glial cell (clusters 21, 28, 34, 41), GABAergic neurons 
(cluster 20), monoaminergic neurons (clusters 22 and 39), and cholinergic 
neurons, respectively.
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Extended Data Fig. 3 | An overview of the central nervous system (CNS) of the 
spider. a, different z-section layer showed the different brain part by Synapsin 
(anti-SYNORF1, green) staining. b, Schematic diagrams showing the organization 
of spider brain in side view. grey line with different z value corresponding the 
z-section of confocal laser scanning. c, Photograph of an adult male Hylyphantes 
graminicola and the brains used for immunolabeling. d, Schematic diagrams 
showing the organization and major structure of the spider CNS in dorsal view. 

EL, eye laminae (red): CB, central body (blue); CL, corpus lamellosum (yellow); 
MB, mushroom body (green); PPN, pedipalpal neuropil; WLN1-4, walking leg 
neuromere 1-4; OPIN, opistosomal nerves. During dissection, staining, and slide 
preparation, protocerebrum (including EL, CB, CL, MB) and subesophageal mass 
(including WLN) are fragile and only with loose connection. So they are almost at 
same horizontal level and the WLN thus are visible at different z-section.
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Extended Data Fig. 4 | Expression patterns of neurotransmitter receptors across the 42 brain cell clusters and five different tissues. Expression level was scaled 
to 0-1. Most receptors are highly expressed in brain/neurons. ADRB1 was highly expressed in non-brain tissues and hemocytes (cluster 25). One GABAB receptor 
(GABAB-R3) was highly expressed in glial cluster (cluster 28).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Neuropeptide signaling in spiders. a, Comparison of 
proportion of the gene number of neuropeptides between marker gene list and 
all genes. Significance was calculated using two-sided Chi-square test. b-c, The 
major outgoing (b) and incoming (c) neuropeptide signals across the 42 brain cell 
clusters. d, The communication networks of two dominant neuropeptide signals 
(Mip and DH31). e-h, Cell communications strength in male and female of spiders. 

Cell communication patterns between males and females are similar. But several 
signals showed sexual difference. i, Examples of large clusters (ncells >500) 
that expressed neuropeptides. j, Expression patterns of neuropeptides and 
neuropeptide receptors across different tissues. Expression level was column-
scaled for comparisons.
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Extended Data Fig. 6 | Comparison of transcriptional similarity and 
expression of selected marker genes between Drosophila and Hylyphantes. 
a, Pairwise transcriptional similarity (measured by markers similarity index, SI) 
of cell clusters from Drosophila and Hylyphantes Red indicates the highest SI 
value. Dendrogram trees were generated by hierarchical clustering using Ward’s 

minimum variance method. Numbers 1-2 represented the conserved cell groups 
between Drosophila and Hylyphantes. b, Dotplot showed the expression pattern 
of gene rut and Fas2 in Hylyphantes and Drosophila. c, Violin plots of expression 
of Mushroom body (MB) markers of Drosophila in Hylyphantes. The MB can be 
subdivided broadly into three separate groups (α/β, α’/β’, and γ) in Drosophila.
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Extended Data Fig. 7 | Gene duplication events in Hylyphantes. a, Proportion 
of multi-copy gene families among all neuronal marker genes. b, Pearson 
correlations between the Random forest (RF) weights for TF sets associated with 
each for single-copy (n = 77) and multicopy orthologs pairs (n = 178) between 
Drosophila and Hylyphantes. Two-tailed Mann–Whitney U-tests were used to 
compare difference. Data in bar plots are mean ± SD. c, Shared TF (dmrt99B and 
Vsx2) of a single-copy ortholog (Tbh) between Drosophila and Hylyphantes. d, 
Genome synteny of H. graminicola. e, Gaussian fitting curve of the Ks distribution 
for gene pairs in collinearity blocks. f, Distribution of orthology ratios between 
Hylyphantes and Drosophila from Orthologous Matrix analysis. g, Two copies of 
HOX clusters in H. graminicola. h, Gene duplication types of H. graminicola that 

were classified using MCScanX. i, Pearson correlations between the RF weights 
for TF sets associated with duplicated gene pairs of highly enriched genes. 
Statistical comparisons were performed by Kruskal Wallis Test followed by post-
hoc Dunn’s correction. Box plots show minimum to maximum (whiskers), 25–75% 
(box), median (band inside) with all data points. j-k, RF weight for duplicated 
genes from ancient duplications ITP (h) and recent species-specific duplication 
Mip. For instance, two ITP genes that potentially resulted from ancient 
duplications showed highly divergent expression patterns and were regulated 
by different TFs; In contrast, two Mips (recent tandem repeats) were expressed in 
the same peptidergic neurons and regulated by the same TF cad (i), Only top 10 of 
TFs for each gene are shown.
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Extended Data Fig. 8 | Enriched biological pathways of PSGs and REGs that expressed in different tissues.  PSGs: positively selected genes; REGs: rapid evolution 
genes. p value was adjusted by Benjamini–Hochberg false discovery rate (FDR).
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Extended Data Fig. 9 | Expression of selected memory-related genes in 
mushroom body-like clusters. a, Dotplot showed the expression of selected 
memory-related genes in Hylyphantes. All genes shown here are positive 
selection genes (PSGs) or rapid evolution genes (REGs) at the node of the 

common ancestor of aerial web-building spiders. b, Amino acids alignment of 
huntingtin (htt) gene. Protein motifs and domains were annotated by searching 
InterPro. Red boxes represent amino acids are fixed in web-building spiders. c, htt 
and three other PSGs/REGs that have been proven to be interacted with htt.
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Extended Data Fig. 10 | Tracing the genetic drivers of neuron diversity and behavior innovation in the spider. The three key evolutionary steps for web-building 
emergence are shown: ~500 Ma, the common ancestor of chelicerates; ~350 Ma, at the common ancestors of spiders; and ~200 Ma, at the common ancestors of 
Araneomorph spiders. Ma, million years ago.
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