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editorial

Structural revolution?
A potential breakthrough in our ability to predict protein structure from sequence could have a major impact on 
evolutionary biology.

The recent announcement that 
AlphaFold2, a deep-learning program 
from Google AI’s DeepMind, had 

won the biennial Critical Assessment of 
Structure Prediction (CASP) competition by 
a substantial margin caused a stir not only 
in scientific circles but in the mainstream 
media as well. Despite the wealth of genome 
sequence data we currently possess, there 
has been no reliable high-throughput way 
to turn this into information about the 
structure of proteins. This is because the 
physics of how a newly translated sequence 
of amino acids folds into a mature structure 
is computationally intractable. Instead, 
expensive and laborious techniques such 
as X-ray crystallography and cryo-EM, 
available only to specialist laboratories, are 
used to determine structures one at a time. 
But it is structures rather than sequences 
that determine how proteins, and therefore 
organisms, function, and hence there has 
been a bottleneck right at the root of biology. 
While much of the media attention focused 
on the biomedical consequences of this new 
development, the implications for studies of 
evolution could be just as profound.

Before we consider some of the new 
possibilities, however, it’s important to 
note some words of caution. Foremost is 
that we don’t yet have enough details for a 
rigorous assessment of AlphaFold2 by the 
scientific community. The code has not 
been released or peer reviewed, and we 
therefore do not know to what degree its 
impressive performance on the 2020 CASP 
structures would be replicated on other 
proteins. To some extent, deep-learning 
approaches always have an element of the 
black box about them, but full access to how 
the program is trained and the ability to test 

it more widely is an important next step. 
Such testing will help to determine whether 
the predominance of human and medically 
relevant structures in existing databases has 
limited AlphaFold’s performance on other 
types of protein. It has also been noted 
that it performs well on structures known 
from crystallography data, but there may be 
anomalies when determining what actually 
occurs in realistic biological solutions.

From an evolutionary standpoint, the 
parts of proteins we care most about are 
usually those where a small sequence change 
can have a major functional consequence, 
and it may be that these are precisely the 
regions where AlphaFold struggles the 
most, because its approach is based at least 
partially on the assumption that similar 
sequences fold in similar ways. It may 
therefore make good predictions at the 
level of a protein family, but distinguishing 
between close homologues that differ 
functionally may be more of a stretch. We 
also don’t know how well it will work on 
large disordered proteins with low levels of 
secondary structure, or how good it will be 
at predicting interactions between proteins 
in multimers, which are often the actual unit 
of biological function.

But if AlphaFold lives up to just part 
of the hype, or if it spurs similar efforts 
that perform even better, evolutionary 
biologists have much to look forward to. 
The idea that we could quickly obtain 
medium-quality structures for thousands of 
proteins across the tree of life is an exciting 
one for obtaining broad insights into how 
phenotypes have diversified. At the very 
least, structural biology could become a part 
of the toolkit for more than a mere handful 
of specialist evolutionary laboratories. It 

might be possible to rapidly predict the 
structural, and possibly functional, effects 
of a wide array of potential mutations, and 
reconstructing ancestral protein structures 
would not involve the years of painstaking 
work that has hitherto been pioneered by a 
few laboratories. Pinpointing the genetic basis 
of adaptation could get substantially easier 
if the functional consequences of mutations 
detected in genetic analyses could quickly be 
predicted. There are also potential insights 
to be had into how early proteins arose from 
simple sequences, and how de novo genes 
become functional, if we can understand the 
structural steps involved. And we may be able 
to identify homologies that are not obvious at 
the sequence level, because structure is often 
conserved even as sequence diverges.

It may be that deep-learning approaches 
are only able to get us so far, and that 
detailed studies of epistatic interactions over 
evolutionary time are still experimentally 
and computationally laborious. But even 
as a first pass at structure prediction, 
they are bound to make a large impact. 
Deep-learning approaches have already 
been applied to other areas of evolutionary 
biology such as phylogenetic reconstruction, 
and their use is likely to expand further. 
Determining how proteins interact would be 
a particularly welcome follow-up to the new 
work on the structure of individual proteins. 
While it is still early days for the DeepMind 
approach to structure, and the caveats above 
are very real, there is a sense of cautious 
optimism amongst structurally inclined 
evolutionary biologists. ❐
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