Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nodal paralogues underlie distinct mechanisms for visceral left–right asymmetry in reptiles and mammals

Abstract

Unidirectional fluid flow generated by motile cilia at the left–right organizer (LRO) breaks left–right (L–R) symmetry during early embryogenesis in mouse, frog and zebrafish. The chick embryo, however, does not require motile cilia for L–R symmetry breaking. The diversity of mechanisms for L–R symmetry breaking among vertebrates and the trigger for such symmetry breaking in non-mammalian amniotes have remained unknown. Here we examined how L–R asymmetry is established in two reptiles, Madagascar ground gecko and Chinese softshell turtle. Both of these reptiles appear to lack motile cilia at the LRO. The expression of the Nodal gene at the LRO in the reptilian embryos was found to be asymmetric, in contrast to that in vertebrates such as mouse that are dependent on cilia for L–R patterning. Two paralogues of the Nodal gene derived from an ancient gene duplication are retained and expressed differentially in cilia-dependent and cilia-independent vertebrates. The expression of these two Nodal paralogues is similarly controlled in the lateral plate mesoderm but regulated differently at the LRO. Our in-depth analysis of reptilian embryos thus suggests that mammals and non-mammalian amniotes deploy distinct strategies dependent on different Nodal paralogues for rendering Nodal activity asymmetric at the LRO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogeny of Nodal1/2 and Cer1/2 genes across vertebrates.
Fig. 2: L–R asymmetric expression of Nodal2 in gecko and turtle embryos.
Fig. 3: Genes required for ciliary motility are not expressed at the blastopore of gecko or turtle embryos.
Fig. 4: Expression in gecko and turtle embryos of genes implicated in L–R patterning in other species.
Fig. 5: Expression of Nodal genes of mammals and chicken in mouse embryos.
Fig. 6: Cilia-dependent and cilia-independent L–R symmetry breaking mechanisms in vertebrates.

Similar content being viewed by others

Data availability

All data are available in the main text, the Extended Data and the Supplementary Information. The molecular sequences identified in this study are included in Supplementary Dataset 1.

References

  1. Blum, M., Feistel, K., Thumberger, T. & Schweickert, A. The evolution and conservation of left–right patterning mechanisms. Development 141, 1603–1613 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Shiratori, H. & Hamada, H. The left–right axis in the mouse: from origin to morphology. Development 133, 2095–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nonaka, S. et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura, T. et al. Fluid flow and interlinked feedback loops establish left–right asymmetric decay of Cerl2 mRNA. Nat. Commun. 3, 1322 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Montague, T. G., Gagnon, J. A. & Schier, A. F. Conserved regulation of Nodal-mediated left–right patterning in zebrafish and mouse. Development 145, dev171090 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schweickert, A. et al. The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. Curr. Biol. 20, 738–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gros, J., Feistel, K., Viebahn, C., Blum, M. & Tabin, C. J. Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324, 941–944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephen, L. A. et al. The chicken left right organizer has nonmotile cilia which are lost in a stage-dependent manner in the talpid(3) ciliopathy. Genesis 52, 600–613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang, C. F. et al. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2. Development 141, 3003–3012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui, C., Little, C. D. & Rongish, B. J. Rotation of organizer tissue contributes to left–right asymmetry. Anat. Rec. (Hoboken) 292, 557–561 (2009).

    Article  Google Scholar 

  11. Kuraku, S. & Kuratani, S. Genome-wide detection of gene extinction in early mammalian evolution. Genome Biol. Evol. 3, 1449–1462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Opazo, J. C., Kuraku, S., Zavala, K., Toloza-Villalobos, J. & Hoffmann, F. G. Evolution of nodal and nodal-related genes and the putative composition of the heterodimers that trigger the nodal pathway in vertebrates. Evol. Dev. 21, 205–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Hara, Y. et al. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol. 16, 40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshida, M. et al. Conserved and divergent expression patterns of markers of axial development in reptilian embryos: Chinese soft-shell turtle and Madagascar ground gecko. Dev. Biol. 415, 122–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Miller, J. D. Embryology of Marine Turtles (Wiley, 1985).

  16. Hubert, J. Embryology of the Squamata (Wiley, 1985).

  17. Stower, M. J. et al. Bi-modal strategy of gastrulation in reptiles. Dev. Dyn. 244, 1144–1157 (2015).

    Article  PubMed  Google Scholar 

  18. Bertocchini, F., Alev, C., Nakaya, Y. & Sheng, G. A little winning streak: the reptilian-eye view of gastrulation in birds. Dev. Growth Differ. 55, 52–59 (2013).

    Article  PubMed  Google Scholar 

  19. Coolen, M. et al. Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS ONE 3, e2676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Loges, N. T. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547–558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shinohara, K. et al. Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo. Nat. Commun. 3, 622 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Meno, C. et al. Left–right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381, 151–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Meno, C. et al. Two closely-related left–right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Boettger, T., Wittler, L. & Kessel, M. FGF8 functions in the specification of the right body side of the chick. Curr. Biol. 9, 277–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka, C., Sakuma, R., Nakamura, T., Hamada, H. & Saijoh, Y. Long-range action of Nodal requires interaction with GDF1. Genes Dev. 21, 3272–3282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawasumi, A. et al. Left–right asymmetry in the level of active Nodal protein produced in the node is translated into left–right asymmetry in the lateral plate of mouse embryos. Dev. Biol. 353, 321–330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adachi, H. et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 13, 1589–1600 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Norris, D. P. & Robertson, E. J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 13, 1575–1588 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saijoh, Y. et al. Left–right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol. Cell 5, 35–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Krebs, L. T. et al. Notch signaling regulates left–right asymmetry determination by inducing Nodal expression. Genes Dev. 17, 1207–1212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noro, M., Uejima, A., Abe, G., Manabe, M. & Tamura, K. Normal developmental stages of the Madagascar ground gecko Paroedura pictus with special reference to limb morphogenesis. Dev. Dyn. 238, 100–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hara, Y. et al. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. BMC Genomics 16, 977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Takaoka, K. et al. The mouse embryo autonomously acquires anterior-posterior polarity at implantation. Dev. Cell 10, 451–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Saijoh, Y. et al. Distinct transcriptional regulatory mechanisms underlie left–right asymmetric expression of lefty-1 and lefty-2. Genes Dev. 13, 259–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cunningham, F. et al. Ensembl 2019. Nucleic Acids Res. 47, D745–D751 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen, N. T. T., Vincens, P., Roest Crollius, H. & Louis, A. Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing. Nucleic Acids Res. 46, D816–D822 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Aizawa for sharing reptile cDNA clones and for advice on reptile embryos, A. Kawasumi for advice on the immunostaining of pSmad2/3 and K. Yamaguchi for technical discussion. This study was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (17H01435) and by Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST) (JPMJCR13W5). U.H. was supported by the Global Science Campus of JST.

Author information

Authors and Affiliations

Authors

Contributions

H.H., E.K., U.H. and S.K. designed the project. E.K. performed most experiments with reptile embryos. U.H. performed the initial expression studies. T.I., K.Mizumo and K.Minegishi performed the SEM, TEM and ciliary motility analysis. Y.I. and H.N. generated transgenic mice harbouring various BAC clones. Y.H. and S.K. performed the genomic and phylogenetic analyses. H.K. maintained and provided the gecko animals. M.U. examined Nodal2 expression in chick embryos. H.H. and S.K. wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Shigehiro Kuraku or Hiroshi Hamada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Detection of structures with features typical of immotile cilia in gecko embryos.

ac, SEM of gecko embryos at stage 9. The anteroposterior (A-P) and dorsoventral (D-V) axes are indicated. The blastopore (BP) region indicated by the rectangle in a is shown at higher magnification in b. The boxed region in b is shown at higher magnification in c. Cilium-like and microvillus-like structures are indicated by red and white arrowheads, respectively. Scale bars: 100 µm (a), 50 µm (b), or 5 µm (c). dh, TEM of gecko embryos at stage 9. The boxed regions near the blastopore (BP) in d are shown at higher magnification in e and g. The boxed regions in e and g are shown at higher magnification in f and h, respectively. Both f′ and f′′ are adjacent distal sections of f. The box in f′′ shows one of the doublet microtubules (black arrowhead) at higher magnification. Note that primary cilia with a typical 9+0 microtubule configuration were detected, but that outer dynein arms characteristic of motile cilia were not. Scale bars: 50 µm (d) or 1 µm (e, g).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Dataset 1.

Reporting Summary

Supplementary Video 1

Movie of the region of the gecko embryo shown in Supplementary Fig. 7b. Note the absence of motile cilia. The images were captured at 150 frames per second for 4 s. Time is shown as minutes:seconds.centiseconds.

Supplementary Video 2

Movie of the region of the gecko embryo shown in Supplementary Fig. 7c. Note that a cilium (arrowhead) is present in this region but does not move. The images were captured at 30 frames per second for 10 s. Time is shown as minutes:seconds.centiseconds.

Supplementary Video 3

Movie of the region of the gecko embryo shown in Supplementary Fig. 7d. Note that a cilium (arrowhead) is present in this region but does not move. The images were captured at 30 frames per second for 10 s. Time is shown as minutes:seconds.centiseconds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajikawa, E., Horo, U., Ide, T. et al. Nodal paralogues underlie distinct mechanisms for visceral left–right asymmetry in reptiles and mammals. Nat Ecol Evol 4, 261–269 (2020). https://doi.org/10.1038/s41559-019-1072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-1072-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing