Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Promotion of protocell self-assembly from mixed amphiphiles at the origin of life

Abstract

Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1–3 SCAs, even though Fischer–Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10–C15 compounds. Here, we show that mixtures of these C10–C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mixtures of amphiphiles increase the pH range of vesicle formation.
Fig. 2: Fatty acid/1-alkanol mixtures form vesicles from pH 7 to pH 12.
Fig. 3: Encapsulation of fluorescent dyes confirms stable vesicle formation.
Fig. 4: Mixtures of amphiphiles lower the concentration needed to form vesicles by ~30-fold.
Fig. 5: Fatty acid/1-alkanol mixtures form vesicles in the presence of salt and divalent cations.
Fig. 6: Salts can promote the formation of filaments composed of vesicles formed from mixed amphiphiles.
Fig. 7: Mixtures of amphiphiles support vesicle formation under oceanic alkaline hydrothermal conditions.

Similar content being viewed by others

Data availability

All data are available in the main text, Extended Data Figs. 110 and the Supplementary Information.

References

  1. Mitchell, P. in The Origin of Life on the Earth (eds Oparin, A. I. et al.) 437–443 (Pergamon Press, 1957).

  2. Nitschke, W. & Russell, M. J. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J. Mol. Evol. 69, 481–496 (2009).

    CAS  PubMed  Google Scholar 

  3. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    CAS  PubMed  Google Scholar 

  4. Lane, N. & Martin, W. F. The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012).

    CAS  PubMed  Google Scholar 

  5. Mulkidjanian, A. Y., Galperin, M. Y. & Koonin, E. V. Co-evolution of primordial membranes and membrane proteins. Trends Biochem. Sci. 34, 206–215 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koga, Y., Kyuragi, T., Nishihara, M. & Sone, N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46, 54–63 (1998).

    CAS  PubMed  Google Scholar 

  7. Martin, W. & Russell, M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. B 358, 59–85 (2003).

    CAS  PubMed  Google Scholar 

  8. Koga, Y. Early evolution of membrane lipids: how did the lipid divide occur? J. Mol. Evol. 72, 274–282 (2011).

    CAS  PubMed  Google Scholar 

  9. Sojo, V. On the biogenic origins of homochirality. Orig. Life Evol. Biosph. 45, 219–224 (2015).

    CAS  PubMed  Google Scholar 

  10. Lombard, J., López-García, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515 (2012).

    CAS  PubMed  Google Scholar 

  11. Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. ACS Biochem. 50, 4114–4120 (2011).

    CAS  Google Scholar 

  12. Caforio, A., Siliakus, M. F., Exterkate, M., Jain, S. & Jumde, V. R. Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc. Natl Acad. Sci. USA 115, 3705–3709 (2018).

    Google Scholar 

  13. Hanczyc, M. M. & Szostak, J. W. Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8, 660–664 (2004).

    CAS  PubMed  Google Scholar 

  14. Chen, I. A. & Szostak, J. W. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc. Natl Acad. Sci. USA 101, 7965–7970 (2004).

    CAS  PubMed  Google Scholar 

  15. Chen, I. A. & Szostak, J. W. A kinetic study of the growth of fatty acid vesicles. Biophys. J. 87, 988–998 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sojo, V., Pomiankowski, A. & Lane, N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol. 12, e1001926 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Orig. Life Evol. Biosph. 31, 119–145 (2001).

    PubMed  Google Scholar 

  18. Segré, D., Ben-Eli, D. & Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl Acad. Sci. USA 97, 4112–4117 (2000).

    PubMed  Google Scholar 

  19. Amend, J. P. & McCollom, T. M. Energetics of biomolecule synthesis on early earth. ACS Symp. Ser. 1025, 63–94 (2009).

    CAS  Google Scholar 

  20. Martin, W. Carbon–metal bonds: rare and primordial in metabolism. Trends Biochem. Sci. 44, 807–818 (2019).

    CAS  PubMed  Google Scholar 

  21. McCollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).

    CAS  PubMed  Google Scholar 

  22. Scheidler, C., Sobotta, J., Eisenreich, W., Wächtershäuser, G. & Huber, C. Unsaturated C3,5,7,9-monocarboxylic acids by aqueous, one-pot carbon fixation: possible relevance for the origin of life. Sci. Rep. 6, 27595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Decker, P. & Schweer, H. Reactions in the formol bioid: the origin of branched chains of isoprenoids, valine, and leucines. Orig. Life 14, 335–342 (1984).

    CAS  Google Scholar 

  24. Pray, H. A., Schweickert, C. E. & Minnich, B. H. Solubility of hydrogen, oxygen, nitrogen, and helium in water at elevated temperatures. Ind. Eng. Chem. 44, 1146–1151 (1952).

    CAS  Google Scholar 

  25. Baaske, P. et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl Acad. Sci. USA 104, 9346–9351 (2007).

    CAS  PubMed  Google Scholar 

  26. Budin, I., Bruckner, R. J. & Szostak, J. W. Formation of protocell-like vesicles in a thermal diffusion column. J. Am. Chem. Soc. 131, 9628–9629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanczyc, M. M., Mansy, S. S. & Szostak, J. W. Mineral surface directed membrane assembly. Orig. Life Evol. Biosph. 37, 67–82 (2007).

    CAS  PubMed  Google Scholar 

  28. Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front. Microbiol. 9, 401 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. West, T., Sojo, V., Pomiankowski, A. & Lane, N. The origin of heredity in protocells. Phil. Trans. R. Soc. B 372, 20160419 (2017).

    PubMed  Google Scholar 

  30. Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London. 154, 377–402 (1997).

    CAS  PubMed  Google Scholar 

  31. Russell, M. J. & Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358–363 (2004).

    CAS  PubMed  Google Scholar 

  32. Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994).

    CAS  Google Scholar 

  33. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. Lond. B 362, 1887–1925 (2007).

    CAS  Google Scholar 

  34. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    CAS  PubMed  Google Scholar 

  35. Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Monnard, P.-A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).

    CAS  PubMed  Google Scholar 

  37. Monnard, P. A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 207, 123–151 (2002).

    Google Scholar 

  38. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  PubMed  Google Scholar 

  39. Deamer, D. The role of lipid membranes in life’s origin. Life 7, 5 (2017).

    PubMed Central  Google Scholar 

  40. Milshteyn, D., Damer, B., Havig, J. & Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8, 11 (2018).

    PubMed Central  Google Scholar 

  41. Maurer, S. The impact of salts on single chain amphiphile membranes and implications for the location of the origin of life. Life 7, 44 (2017).

    PubMed Central  Google Scholar 

  42. Maurer, S. E. et al. Vesicle self-assembly of monoalkyl amphiphiles under the effects of high ionic strength, extreme pH, and high temperature environments. Langmuir 34, 15560–15568 (2018).

    CAS  PubMed  Google Scholar 

  43. Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 1519, 1–9 (2002).

    Google Scholar 

  44. Rendón, A. et al. Model systems of precursor cellular membranes: long-chain alcohols stabilize spontaneously formed oleic acid vesicles. Biophys. J. 102, 278–286 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Namani, T. & Deamer, D. W. Stability of model membranes in extreme environments. Orig. Life Evol. Biosph. 38, 329–341 (2008).

    CAS  PubMed  Google Scholar 

  46. Cape, J. L., Monnard, P. A. & Boncella, J. M. Prebiotically relevant mixed fatty acid vesicles support anionic solute encapsulation and photochemically catalyzed trans-membrane charge transport. Chem. Sci. 2, 661–671 (2011).

    CAS  Google Scholar 

  47. Monnard, P. A. & Deamer, D. W. Preparation of vesicles from nonphospholipid amphiphiles. Methods Enzymol. 372, 133–151 (2003).

    CAS  PubMed  Google Scholar 

  48. Thanh Thuy, D., Decnop-Weever, D., Th. Kok, W., Luan, P. & Vong Nghi, T. Determination of traces of calcium and magnesium in rare earth oxides by flow-injection analysis. Anal. Chim. Acta 295, 151–157 (1994).

    Google Scholar 

  49. Avnir, Y. & Barenholz, Y. pH determination by pyranine: medium-related artifacts and their correction. Anal. Biochem. 347, 34–41 (2005).

    CAS  PubMed  Google Scholar 

  50. Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

    CAS  PubMed  Google Scholar 

  51. Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005).

    CAS  PubMed  Google Scholar 

  52. Smith, R. & Tanford, C. Hydrophobicity of long chain n-alkyl carboxylic acids, as measured by their distribution between heptane and aqueous solutions. Proc. Natl Acad. Sci. USA 70, 289–293 (1973).

    CAS  PubMed  Google Scholar 

  53. Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solution. Biophys. J. 107, 1582–1590 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maurer, S. E. & Nguyen, G. Prebiotic vesicle formation and the necessity of salts. Orig. Life Evol. Biosph. 46, 215–222 (2016).

    CAS  PubMed  Google Scholar 

  55. Hargreaves, W. R. & Deamer, D. W. Liposomes from ionic, single-chain amphiphiles. Biochemistry 17, 3759–3768 (1978).

    CAS  PubMed  Google Scholar 

  56. Sojo, V., Herschy, B., Whicher, A., Camprubí, E. & Lane, N. The origin of life in alkaline hydrothermal vents. Astrobiology 16, 181–197 (2016).

    CAS  PubMed  Google Scholar 

  57. Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. C. R. Geosci. 350, 154–163 (2018).

    Google Scholar 

  58. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

  59. Fyfe, W. S. The water inventory of the Earth: fluids and tectonics. Geol. Soc. Spec. Publ. 78, 1–7 (1994).

    Google Scholar 

  60. Arndt, N. T. & Nisbet, E. G. Processes on the young earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012).

    CAS  Google Scholar 

  61. Russell, M. J. & Arndt, N. T. Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2, 97–111 (2005).

    CAS  Google Scholar 

  62. Lopresti, C., Lomas, H., Massignani, M., Smart, T. & Battaglia, G. Polymersomes: nature inspired nanometer sized compartments. J. Mater. Chem. 19, 3576–3590 (2009).

    CAS  Google Scholar 

  63. Smart, T. et al. Block copolymer nanostructures. Nanotoday 3, 38–46 (2008).

    CAS  Google Scholar 

  64. Bonaccio, S., Wessicken, M., Berti, D., Walde, P. & Luisi, P. L. Relation between the molecular structure of phosphatidyl nucleosides and the morphology of their supramolecular and mesoscopic aggregates. Langmuir 12, 4976–4978 (1996).

    CAS  Google Scholar 

  65. Morse, J. W. & Mackenzie, F. T. Hadean ocean carbonate geochemistry. Aquat. Geochem. 4, 301–319 (1998).

    CAS  Google Scholar 

  66. Holm, N. G. The significance of Mg in prebiotic geochemistry. Geobiology 10, 269–279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ludwig, K. A., Kelley, D. S., Butterfield, D. A., Nelson, B. K. & Fru-Green, G. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 70, 3625–3645 (2006).

    CAS  Google Scholar 

  68. Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jordan, S. F., Nee, E. & Lane, N. Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide. Interface Focus 9, 88–100 (2019).

    Google Scholar 

  70. Camprubi, E., Jordan, S. F., Vasiliadou, R. & Lane, N. Iron catalysis at the origin of life. IUBMB Life 69, 373–381 (2017).

    CAS  PubMed  Google Scholar 

  71. Lane, N., Allen, J. F. & Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271–280 (2010).

    CAS  PubMed  Google Scholar 

  72. Harrison, S. & Lane, N. Life as a guide to prebiotic nucleotide synthesis. Nat. Commun. 9, 5176 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Turmaine for assistance with NS-TEM, and B. Battaglia, F. Werner and D. Braben for discussions. We are grateful to the BBSRC (H.R., LIDo Doctoral Training Programme) and bgc3 for funding. A.M.H. and A.M. are funded by the Medical Research Council UK (Career Development Award grant no. MR/M00936X/1 to A.M.).

Author information

Authors and Affiliations

Authors

Contributions

N.L. supervised the work. S.F.J., H.R., I.N.Z., A.M.H., A.M. and N.L. conceived and designed the experiments. S.F.J., H.R., I.N.Z. and A.M.H. performed the experiments. S.F.J., I.N.Z., A.M.H. and A.M. contributed materials and analysis tools. S.F.J. and N.L. analysed the data. S.F.J. and N.L. wrote the paper.

Corresponding author

Correspondence to Nick Lane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic representation of three different states of amphiphiles in aqueous solutions and their general relationship to pH.

Blue shading highlights hydrophilic areas whereas pink shading represents hydrophobic areas. Fully deprotonated amphiphiles will form micelles with a hydrophobic interior and hydrophilic exterior. Mixtures of protonated and deprotonated amphiphiles can self-organise into bilayer membranes forming vesicles with an aqueous interior. Fully protonated amphiphiles form hydrophobic droplets in aqueous solutions.

Extended Data Fig. 2 Optical density plot for 10:1 fatty acid/1-alkanol mixture.

Plot of normalised absorbance at 480 nm versus pH for 5 mM 10:1 C10-C15 fatty acid/1-alkanol mixture.

Extended Data Fig. 3 NS-TEM micrograph of vesicles from 0.1 mM 1:1 C10-C15 fatty acid/1-alkanol mixture.

NS-TEM micrograph of 0.1 mM 1:1 C10-C15 fatty acid/1-alkanol mixture vesicles at pH 7.17 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 4 NS-TEM micrograph of vesicles from 0.1 mM 1:1 C10-C15 fatty acid/1-alkanol mixture.

NS-TEM micrograph of 0.1 mM 1:1 C10-C15 fatty acid/1-alkanol mixture vesicles at pH 8.29 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 5 Critical bilayer concentration (CBC) plots for 1:1 and 5:1 fatty acid/1-alkanol mixtures.

Plot of absorbance at 480 nm versus concentration for 1:1 C10-C15 fatty acid/1-alkanol mixture (a) and 5:1 C10-C15 fatty acid/1-alkanol mixture (b).

Extended Data Fig. 6 NS-TEM micrograph of vesicles from 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture in NaCl.

NS-TEM micrograph of 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture vesicles in 600 mM NaCl at pH 12.19 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 7 NS-TEM micrograph of vesicles from 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture in MgCl2.

NS-TEM micrograph of 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture vesicles in 50 mM MgCl2 at pH 11.83 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 8 NS-TEM micrograph of vesicles from 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture in CaCl2.

NS-TEM micrograph of 5 mM 1:1 C10-C15 fatty acid/1-alkanol mixture vesicles in 10 mM CaCl2 at pH 12.18 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 9 NS-TEM micrograph of vesicles from 5 mM 1:1:1 C10-C15 fatty acid/1-alkanol/C10 isoprenoid mixture vesicles in mixture of salts.

NS-TEM micrograph of 5 mM 1:1:1 C10-C15 fatty acid/1-alkanol/C10 isoprenoid mixture vesicles in mixture of salts (600 mM NaCl, 50 mM MgCl2, 10 mM CaCl2) at pH 11.73 (some examples of vesicles indicated by black arrows).

Extended Data Fig. 10 Size exclusion chromatography (SEC) plot for 1:1:1 C10-C15 fatty acid/1-alkanol/C10 isoprenoid mixture vesicles in mixture of salts.

Plot of fluorescence intensity versus fraction number following size exclusion chromatography of 5 mM 1:1:1 C10-C15 fatty acid/1-alkanol/C10 isoprenoid mixture vesicles in mixture of salts (600 mM NaCl, 50 mM MgCl2, 10 mM CaCl2) at pH 12 prepared in the presence of 5 mM calcein. The initial peak represents the vesicle fraction and is followed by the free calcein dye.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1 and 2 and Figs. 1–14.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, S.F., Rammu, H., Zheludev, I.N. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat Ecol Evol 3, 1705–1714 (2019). https://doi.org/10.1038/s41559-019-1015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-1015-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology