Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigating mitonuclear interactions in human admixed populations

Abstract

To function properly, mitochondria utilize products of 37 mitochondrial and >1,000 nuclear genes, which should be compatible with each other. Discordance between mitochondrial and nuclear genetic ancestry could contribute to phenotypic variation in admixed populations. Here, we explored potential mitonuclear incompatibility in six admixed human populations from the Americas: African Americans, African Caribbeans, Colombians, Mexicans, Peruvians and Puerto Ricans. By comparing nuclear versus mitochondrial ancestry in these populations, we first show that mitochondrial DNA (mtDNA) copy number decreases with increasing discordance between nuclear and mtDNA ancestry. The direction of this effect is consistent across mtDNA haplogroups of different geographic origins. This observation indicates suboptimal regulation of mtDNA replication when its components are encoded by nuclear and mtDNA genes with different ancestry. Second, while most populations analysed exhibit no such trend, in African Americans and Puerto Ricans, we find a significant enrichment of ancestry at nuclear-encoded mitochondrial genes towards the source populations contributing the most prevalent mtDNA haplogroups (African and Native American, respectively). This possibly reflects compensatory effects of selection in recovering mitonuclear interactions optimized in the source populations. Our results provide evidence of mitonuclear interactions in human admixed populations and we discuss their implications for human health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expected signatures of mitonuclear incompatibility at the level of individuals or populations.
Fig. 2: Ternary plots showing the distribution of African, European and Native American ancestry in the samples analysed (samples sizes are shown in parentheses).
Fig. 3: mtDNA copy number in admixed and non-admixed populations.
Fig. 4: Expected versus observed frequency of mtDNA haplogroups from each of the three source populations.
Fig. 5: Systematic deviations in local ancestry for different functional categories of genes.

Similar content being viewed by others

Data availability

All analyses were conducted using publicly available data. The 1000 Genomes Project data are available on its FTP site. Intermediate files and code have been made publicly available on github: (https://github.com/makovalab-psu/Mito_nuclear_incompatibility).

References

  1. Sackton, T. B., Haney, R. A. & Rand, D. M. Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes. Evolution 57, 2315–2325 (2003).

    CAS  PubMed  Google Scholar 

  2. Mossman, J. A. et al. Mitonuclear interactions mediate transcriptional responses to hypoxia in drosophila. Mol. Biol. Evol. 34, 447–466 (2017).

    CAS  PubMed  Google Scholar 

  3. Meiklejohn, C. D. et al. An incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet. 9, e1003238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. James, A. C. & Ballard, J. W. O. Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164, 187–194 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Montooth, K. L., Meiklejohn, C. D., Abt, D. N. & Rand, D. M. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64, 3364–3379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dowling, D. K., Friberg, U., Hailer, F. & Arnqvist, G. Intergenomic epistasis for fitness: within-population interactions between cytoplasmic and nuclear genes in Drosophila melanogaster. Genetics 175, 235–244 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. Hoekstra, L. A., Siddiq, M. A. & Montooth, K. L. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 195, 1129–1139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellison, C. K., Niehuis, O. & Gadau, J. Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J. Evol. Biol. 21, 1844–1851 (2008).

    CAS  PubMed  Google Scholar 

  9. Niehuis, O., Judson, A. K. & Gadau, J. Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178, 413–426 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koevoets, T., Niehuis, O., van de Zande, L. & Beukeboom, L. W. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci. Heredity 108, 302–311 (2012).

    CAS  PubMed  Google Scholar 

  11. Immonen, E., Rönn, J., Watson, C., Berger, D. & Arnqvist, G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J. Evol. Biol. 29, 360–370 (2016).

    CAS  PubMed  Google Scholar 

  12. Ellison, C. K. & Burton, R. S. Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60, 1382–1391 (2006).

    CAS  PubMed  Google Scholar 

  13. Ellison, C. K. & Burton, R. S. Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62, 631–638 (2008).

    PubMed  Google Scholar 

  14. Barreto, F. S. & Burton, R. S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. B 280, 20131521 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Rawson, P. D. & Burton, R. S. Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc. Natl Acad. Sci. USA 99, 12955–12958 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chou, J.-Y. & Leu, J.-Y. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. Bioessays 32, 401–411 (2010).

    CAS  PubMed  Google Scholar 

  17. Lee, H.-Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135, 1065–1073 (2008).

    CAS  PubMed  Google Scholar 

  18. Chou, J.-Y., Hung, Y.-S., Lin, K.-H., Lee, H.-Y. & Leu, J.-Y. Multiple molecular mechanismscause reproductive isolation between three yeast species. PLoS Biol. 8, e1000432 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Ellison, C. K. & Burton, R. S. Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. J. Evol. Biol. 23, 528–538 (2010).

    CAS  PubMed  Google Scholar 

  20. Baris, T. Z. et al. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet. 13, e1006517 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Morales, H. E. et al. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat. Ecol. Evol. 2, 1258–1267 (2018).

    PubMed  Google Scholar 

  22. Bar-Yaacov, D. et al. Mitochondrial involvement in vertebrate speciation? The case of mitonuclear genetic divergence in chameleons. Genome Biol. Evol. 7, 3322–3336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Levin, L., Blumberg, A., Barshad, G. & Mishmar, D. Mitonuclear co-evolution: the positive and negative sides of functional ancient mutations. Front. Genet. 5, 448 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Gershoni, M. et al. Disrupting mitochondrial–nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol. Evol. 6, 2665–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sloan, D. B., Fields, P. D. & Havird, J. C. Mitonuclear linkage disequilibrium in human populations. Proc. R. Soc. B 282, 20151704 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Rosenberg, N. A. Genetic structure of human populations. Science 298, 2381–2385 (2002).

    CAS  PubMed  Google Scholar 

  27. Cann, H. M. A human genome diversity cell line panel.Science 296, 261b–262b (2002).

    Google Scholar 

  28. Sharbrough, J., Havird, J. C., Noe, G. R., Warren, J. M. & Sloan, D. B. The mitonuclear dimension of Neanderthal and Denisovan ancestry in modern human genomes. Genome Biol. Evol. 9, 1567–1581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Serre, D. et al. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol. 2, E57 (2004).

    PubMed  PubMed Central  Google Scholar 

  30. Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).

    CAS  PubMed  Google Scholar 

  31. The 1000 Genomes Project Consortium An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  32. The 1000 Genomes Project Consortium A global reference for human genetic variation. Nature 526, 68–74 (2015).

  33. Bailey, L. J. & Doherty, A. J. Mitochondrial DNA replication: a primpol perspective. Biochem. Soc. Trans. 45, 513–529 (2017).

  34. Ciesielski, G. L., Oliveira, M. T. & Kaguni, L. S. Animal mitochondrial dna replication. Enzymes 39, 255–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Homburger, J. R. et al. Genomic insights into the ancestry and demographic history of South America. PLoS Genet. 11, e1005602 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Moreno-Estrada, A. et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet. 9, e1003925 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Ruiz-Linares, A. et al. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet. 10, e1004572 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Long, J. C. The genetic structure of admixed populations. Genetics 127, 417–428 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartl, D. L., Clark, A. G. & Clark, A. G. Principles of Population Genetics (Sinauer Associates, Sunderland, 1997).

    Google Scholar 

  42. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schatz, G. The protein import machinery of mitochondria. Protein Sci. 2, 141–146 (2008).

    Google Scholar 

  45. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A. L. Estimating and interpreting FST: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Holt, I. J. & Reyes, A. Human mitochondrial DNA replication. Cold Spring Harb. Perspect. Biol. 4, a012971 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. Trounce, I., Neill, S. & Wallace, D. C. Cytoplasmic transfer of the mtDNA nt 8993 T–>G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc. Natl Acad. Sci. USA 91, 8334–8338 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, H. K. et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 42, 161–167 (1998).

    CAS  PubMed  Google Scholar 

  49. Pyle, A. et al. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease.Neurobiol. Aging 38, 216.e7–216.e10 (2016).

    CAS  Google Scholar 

  50. Jiang, M. et al. Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell. Metab. 26, 429–436.e4 (2017).

    CAS  PubMed  Google Scholar 

  51. Cai, N. et al. Molecular signatures of major depression. Curr. Biol. 25, 1146–1156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mengel-From, J. et al. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum. Genet. 133, 1149–1159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hosgood, H. D. et al. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study. Carcinogenesis 31, 847–849 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci. 89, 65–71 (2011).

    CAS  PubMed  Google Scholar 

  55. Shen, J., Platek, M., Mahasneh, A., Ambrosone, C. B. & Zhao, H. Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion 10, 62–68 (2010).

    CAS  PubMed  Google Scholar 

  56. Larsen, S. et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349–3360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wachsmuth, M., Huebner, A., Li, M., Madea, B. & Stoneking, M. Age-related and heteroplasmy-related variation in human mtDNA copy number. PLoS Genet. 12, e1005939 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Cai, N. et al. Genetic control over mtDNA and its relationship to major depressive disorder. Curr. Biol. 25, 3170–3177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    CAS  PubMed  Google Scholar 

  60. Balloux, F., Handley, L.-J. L., Jombart, T., Liu, H. & Manica, A. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc. R. Soc. B 276, 3447–3455 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Reinhardt, K., Dowling, D. K. & Morrow, E. H. Mitochondrial replacement, evolution, and the clinic. Science 341, 1345–1346 (2013).

    PubMed  Google Scholar 

  63. Wolf, D. P., Mitalipov, N. & Mitalipov, S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol. Med. 21, 68–76 (2015).

    CAS  PubMed  Google Scholar 

  64. Gemmell, N. & Wolff, J. N. Mitochondrial replacement therapy: cautiously replace the master manipulator. Bioessays 37, 584–585 (2015).

    PubMed  Google Scholar 

  65. Kenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim. Biophys. Acta 1842, 208–219 (2014).

    CAS  PubMed  Google Scholar 

  66. Fu, V. K. Interracial-interethnic unions and fertility in the United States. J. Marriage Fam. Couns. 70, 783–795 (2008).

    Google Scholar 

  67. Ballinger, S. W. Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem. Soc. Trans. 41, 111–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mao, X. et al. A genomewide admixture mapping panel for Hispanic/Latino populations. Am. J. Hum. Genet. 80, 1171–1178 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).

    PubMed  Google Scholar 

  72. Rishishwar, L. & Jordan, I. K. Implications of human evolution and admixture for mitochondrial replacement therapy. BMC Genomics 18, 140 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Ding, J. et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS Genet. 11, e1005306 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Joesch-Cohen, L. M. & Glusman, G. Differences between the genomes of lymphoblastoid cell lines and blood-derived samples. Adv. Genomics Genet. 7, 1–9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chakrabarty, S. et al. Upregulation of TFAM and mitochondria copy number in human lymphoblastoid cells. Mitochondrion 15, 52–58 (2014).

    CAS  PubMed  Google Scholar 

  76. Nickles, D. et al. In depth comparison of an individual’s DNA and its lymphoblastoid cell line using whole genome sequencing. BMC Genomics 13, 477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jeon, J.-P. et al. Copy number increase of 1p36.33 and mitochondrial genome amplification in Epstein–Barr virus-transformed lymphoblastoid cell lines. Cancer Genet. Cytogenet. 173, 122–130 (2007).

    CAS  PubMed  Google Scholar 

  78. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bryc, K., Durand, E. Y., Michael Macpherson, J., Reich, D. & Mountain, J. L. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am. J. Hum. Genet. 96, 37–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lind, J. M. et al. Elevated male European and female African contributions to the genomes of African American individuals. Hum. Genet. 120, 713–722 (2007).

    PubMed  Google Scholar 

  81. Jobling, M., Hollox, E., Hurles, M., Kivisild, T. & Tyler-Smith, C. Human Evolutionary Genetics 2nd edn (Garland Science, New York and London, 2013).

  82. Pfaff, C. L. et al. Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium. Am. J. Hum. Genet. 68, 198–207 (2001).

    CAS  PubMed  Google Scholar 

  83. Tang, H. et al. Recent genetic selection in the ancestral admixture of Puerto Ricans. Am. J. Hum. Genet. 81, 626–633 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldberg, A. & Rosenberg, N. A. Beyond 2/3 and 1/3: the complex signatures of sex-biased admixture on the X chromosome. Genetics 201, 263–279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jobling, M., Hurles, M. & Tyler-Smith, C. Human Evolutionary Genetics: Origins, Peoples & Disease (Garland Science, New York and London, 2013).

  86. Brown, G. R., Laland, K. N. & Mulder, M. B. Bateman’s principles and human sex roles. Trends Ecol. Evol. 24, 297–304 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Betzig, L. Means, variances, and ranges in reproductive success: comparative evidence. Evol. Hum. Behav. 33, 309–317 (2012).

    Google Scholar 

  88. Quinlan, A. R. BEDTools: The swiss-army tool for genome feature analysis.Curr. Protoc. Bioinformatics 47, 12.1–34 (2014).

    Google Scholar 

  89. Nielsen, R. & Slatkin, M. An Introduction to Population Genetics: Theory and Applications (Sinauer Associates, Sunderland, 2013).

    Google Scholar 

Download references

Acknowledgements

We thank R. Nielsen, M. Shriver, W. Chase and S. Craig for their comments on the manuscript. We would also like to thank E. Torres Gonzalez for reviewing the code. This project was supported by a seed grant awarded to A.A.Z. and K.D.M. from the Center of Human Evolution and Diversity (CHED) at The Pennsylvania State University and by a grant from NIH (R01GM116044). Additional funding was provided by the Eberly College of Sciences, The Huck Institute of Life Sciences and the Institute for CyberScience at Penn State, as well as, in part, under grants from the Pennsylvania Department of Health using Tobacco Settlement and CURE Funds. The department specifically disclaims any responsibility for any analyses, responsibility or conclusions.

Author information

Authors and Affiliations

Authors

Contributions

A.A.Z. and K.D.M. conceived the study. A.A.Z. carried out analyses. A.A.Z. and K.D.M. wrote and edited the paper.

Corresponding author

Correspondence to Kateryna D. Makova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–11

Reporting Summary

Supplementary Tables

Supplementary Table 1, mtDNA copy number data; Supplementary Table 2, Autosomal ancestry fractions for all samples used in the study; Supplementary Table 3, X-chromosomal ancestry fractions for all samples used in the study; Supplementary Table 4, mtDNA haplogroup information for each sample; Supplementary Table 5, List of genes from Mitocarta 2.0 with functional annotation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, A.A., Makova, K.D. Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol 3, 213–222 (2019). https://doi.org/10.1038/s41559-018-0766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0766-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing