Abstract

The capacity for some pathogens to jump into different host-species populations is a major threat to public health and food security. Staphylococcus aureus is a multi-host bacterial pathogen responsible for important human and livestock diseases. Here, using a population-genomic approach, we identify humans as a major hub for ancient and recent S. aureus host-switching events linked to the emergence of endemic livestock strains, and cows as the main animal reservoir for the emergence of human epidemic clones. Such host-species transitions are associated with horizontal acquisition of genetic elements from host-specific gene pools conferring traits required for survival in the new host-niche. Importantly, genes associated with antimicrobial resistance are unevenly distributed among human and animal hosts, reflecting distinct antibiotic usage practices in medicine and agriculture. In addition to gene acquisition, genetic diversification has occurred in pathways associated with nutrient acquisition, implying metabolic remodelling after a host switch in response to distinct nutrient availability. For example, S. aureus from dairy cattle exhibit enhanced utilization of lactose—a major source of carbohydrate in bovine milk. Overall, our findings highlight the influence of human activities on the multi-host ecology of a major bacterial pathogen, underpinned by horizontal gene transfer and core genome diversification.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Morand, S., McIntyre, K. M. & Baylis, M. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect. Genet. Evol. 24, 76–81 (2014).

  2. 2.

    Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244 (2005).

  3. 3.

    Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

  4. 4.

    Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

  5. 5.

    Peton, V. & Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 21, 602–615 (2014).

  6. 6.

    Bradley, A. J., Leach, K. A., Breen, J. E., Green, L. E. & Green, M. J. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet. Rec. 160, 253–257 (2007).

  7. 7.

    McNamee, P. T. & Smyth, J. A. Bacterial chondronecrosis with osteomyelitis (‘femoral head necrosis’) of broiler chickens: a review. Avian Pathol. 29, 477–495 (2000).

  8. 8.

    Van Duijkeren, E. et al. Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerg. Infect. Dis. 13, 1408–1410 (2007).

  9. 9.

    Viana, D. et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 47, 361–366 (2015).

  10. 10.

    Feil, E. J. et al. How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316 (2003).

  11. 11.

    Shepheard, M. A. et al. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS ONE 8, e62369 (2013).

  12. 12.

    Weinert, L. A. et al. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol. Lett. 8, 829–832 (2012).

  13. 13.

    Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).

  14. 14.

    Fitzgerald, J. R. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20, 192–198 (2012).

  15. 15.

    Holden, M. T. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).

  16. 16.

    McAdam, P. R. et al. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 109, 9107–9112 (2012).

  17. 17.

    Spoor, L. E. et al. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 4, e00356-13 (2013).

  18. 18.

    Lowder, B. V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 19545–19550 (2009).

  19. 19.

    Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).

  20. 20.

    Guinane, C. M. et al. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol. Evol. 2, 454–466 (2010).

  21. 21.

    Koymans, K. J., Vrieling, M., Gorham, R. D.Jr & van Strijp, J. A. Staphylococcal immune evasion proteins: structure, function, and host adaptation. Curr. Top. Microbiol. Immunol. 409, 441–489 (2017).

  22. 22.

    Koop, G. et al. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci. Rep. 7, 40660 (2017).

  23. 23.

    Loffler, B. et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 6, e1000715 (2010).

  24. 24.

    Vrieling, M. et al. LukMF’ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci. Rep. 6, 37759 (2016).

  25. 25.

    De Jong, N. W. M. et al. Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. J. Biol. Chem. 293, 4468–4477 (2018).

  26. 26.

    Wilson, G. J. et al. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7, e1002271 (2011).

  27. 27.

    Tong, S. Y. et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015).

  28. 28.

    Thaipadungpanit, J. et al. Clinical and molecular epidemiology of Staphylococcus argenteus infections in Thailand. J. Clin. Microbiol. 53, 1005–1008 (2015).

  29. 29.

    Aanensen, D. M. et al. Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. mBio 7, e00444-16 (2016).

  30. 30.

    Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).

  31. 31.

    De Maio, N., Wu, C. H., O’Reilly, K. M. & Wilson, D. New routes to phylogeography: a Bayesian structured coalescent approximation. PLoS Genet. 11, e1005421 (2015).

  32. 32.

    Sheppard, S. K. et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23, 2442–2451 (2014).

  33. 33.

    Deringer, J. R., Ely, R. J., Monday, S. R., Stauffacher, C. V. & Bohach, G. A. Vβ-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect. Immun. 65, 4048–4054 (1997).

  34. 34.

    Howden, B. P., Peleg, A. Y. & Stinear, T. P. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect. Genet. Evol. 21, 575–582 (2014).

  35. 35.

    UK One Health Report: Antibiotics Use in Humans and Animals (Public Health England & Veterinary Medicines Directorate, 2015).

  36. 36.

    Ward, M. J. et al. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus CC398. Appl. Environ. Microbiol. 80, 7275–7282 (2014).

  37. 37.

    Murray, S. et al. Recombination-mediated host adaptation by avian Staphylococcus aureus. Genome Biol. Evol. 9, 830–842 (2017).

  38. 38.

    Ward, M. J. et al. Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol. 17, 160 (2016).

  39. 39.

    Argimon, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2, e000093 (2016).

  40. 40.

    Zerbino, D. R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinformatics 11, 11.5 (2010).

  41. 41.

    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

  42. 42.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

  43. 43.

    Nadalin, F., Vezzi, F. & Policriti, A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinform. 13, S8 (2012).

  44. 44.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  45. 45.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  46. 46.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

  47. 47.

    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).

  48. 48.

    Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6 (2012).

  49. 49.

    Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2012).

  50. 51.

    Aibar, S., Fontanillo, C., Droste, C. & De Las Rivas, J. Functional gene networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering. Bioinformatics 31, 1686–1688 (2015).

  51. 52.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

  52. 53.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

  53. 50.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

  54. 54.

    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).

  55. 55.

    Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

  56. 56.

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

  57. 57.

    Wright, D. W., Angus, T., Enright, A. J. & Freeman, T. C. Visualisation of BioPAX networks using BioLayout Express3D. F1000Res 3, 246 (2014).

  58. 58.

    Paradis, E. Analysis of diversification: combining phylogenetic and taxonomic data. Proc. Biol. Sci. 270, 2499–2505 (2003).

  59. 59.

    David, S. et al. Evaluation of an optimal epidemiological typing scheme for Legionella pneumophila with whole-genome sequence data using validation guidelines. J. Clin. Microbiol. 54, 2135–2148 (2016).

  60. 60.

    Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14–20 (2007).

  61. 61.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. System. Biol. https://doi.org/10.1093/sysbio/syy032 (2018).

  62. 62.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  63. 63.

    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

  64. 64.

    Bruen, T. & Bruen, T. PhiPack: PHI Test and Other Tests of Recombination (McGill University, Montreal, 2005).

  65. 65.

    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

  66. 66.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

  67. 67.

    Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

  68. 68.

    Maere, S., Heymans, K. & Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21, 3448–3449 (2005).

  69. 69.

    Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLoS ONE 6, e21800 (2011).

Download references

Acknowledgements

This study was supported by a project grant (BB/I013873/1) and institute strategic grant funding ISP2: BBS/E/D/20002173 from the Biotechnology and Biological Sciences Research Council (UK) to J.R.F., Medical Research Council (UK) grant MRNO2995X/1 to J.R.F. and Wellcome Trust collaborative award 201531/Z/16/Z to J.R.F. S.Y.C.T. is an Australian National Health and Medical Research Council Career Development Fellow (number 1065736). L.A.W. is supported by a Dorothy Hodgkin Fellowship funded by the Royal Society (grant number DH140195) and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and Royal Society (grant number 109385/Z/15/Z). S.L. is supported by a Chancellor’s Fellowship from the University of Edinburgh. M.T.G.H. was supported by the Scottish Infection Research Network and Chief Scientist Office through Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). E.M.H. and S.J.P. were funded by The Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust, the UKCRC Translational Infection Research Initiative, and the Medical Research Council (grant number G1000803). S.J.P. is a National Institute for Health Research senior investigator. P.A.H. is supported by Natural Environment Research Council grant NE/M001415/1. We thank B. Blane, N. Brown and E. Torok for their role in the original study isolating and sequencing S. aureus from patients at the Cambridge University Hospitals NHS Foundation Trust, from which 76 genomes were downloaded from the ENA and used in this study. We also thank Edinburgh Genomics for sequencing, and all those who made isolates available for the study, including the Zoological Society London, G. Foster, H. Hasman, S. Monecke, E. Smith, D. Smyth and H. Jorgensen.

Author information

Author notes

    • Emily J. Richardson

    Present address: Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK

  1. These authors contributed equally: Emily J. Richardson, Rodrigo Bacigalupe, Ewan M. Harrison, Lucy A. Weinert.

Affiliations

  1. The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK

    • Emily J. Richardson
    • , Rodrigo Bacigalupe
    • , Samantha Lycett
    • , Manouk Vrieling
    •  & J. Ross Fitzgerald
  2. Department of Medicine, University of Cambridge, Cambridge, UK

    • Ewan M. Harrison
  3. Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

    • Lucy A. Weinert
    •  & Mark Holmes
  4. University of Strathclyde, Glasgow, UK

    • Kirsty Robb
    •  & Paul A. Hoskisson
  5. School of Medicine, University of St Andrews, St Andrews, UK

    • Matthew T. G. Holden
  6. Milner Centre for Evolution, University of Bath, Bath, UK

    • Edward J. Feil
  7. Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK

    • Gavin K. Paterson
  8. Victorian Infectious Disease Service, The Royal Melbourne Hospital and The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

    • Steven Y. C. Tong
  9. Menzies School of Health Research, Darwin, Australia

    • Steven Y. C. Tong
  10. Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria

    • Adebayo Shittu
  11. Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands

    • Willem van Wamel
  12. Centre for Genomic Pathogen Surveillance, Hinxton, UK

    • David M. Aanensen
  13. Department of Infectious Disease Epidemiology, Imperial College London, London, UK

    • David M. Aanensen
  14. Wellcome Trust Sanger Institute, Hinxton, UK

    • Julian Parkhill
    •  & Jukka Corander
  15. London School of Hygiene and Tropical Medicine, London, UK

    • Sharon J. Peacock
  16. Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

    • Jukka Corander
  17. Department of Biostatistics, University of Oslo, Oslo, Norway

    • Jukka Corander

Authors

  1. Search for Emily J. Richardson in:

  2. Search for Rodrigo Bacigalupe in:

  3. Search for Ewan M. Harrison in:

  4. Search for Lucy A. Weinert in:

  5. Search for Samantha Lycett in:

  6. Search for Manouk Vrieling in:

  7. Search for Kirsty Robb in:

  8. Search for Paul A. Hoskisson in:

  9. Search for Matthew T. G. Holden in:

  10. Search for Edward J. Feil in:

  11. Search for Gavin K. Paterson in:

  12. Search for Steven Y. C. Tong in:

  13. Search for Adebayo Shittu in:

  14. Search for Willem van Wamel in:

  15. Search for David M. Aanensen in:

  16. Search for Julian Parkhill in:

  17. Search for Sharon J. Peacock in:

  18. Search for Jukka Corander in:

  19. Search for Mark Holmes in:

  20. Search for J. Ross Fitzgerald in:

Contributions

J.R.F., S.J.P., J.P., M.H., E.M.H., L.A.W. and M.T.G.H. conceived and designed the study. E.J.R., R.B., E.M.H., L.A.W., S.L., M.V. and K.R. carried out the experiments. E.J.R., R.B., E.M.H., L.A.W., S.L., G.K.P., D.M.A., M.T.G.H., E.J.F., J.C., M.V., P.A.H., K.R. and J.R.F. analysed the data. S.Y.C.T., A.S. and W.v.W. provided isolates. E.J.R., R.B., E.M.H., S.L. and J.R.F. wrote the manuscript. All authors contributed to editing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. Ross Fitzgerald.

Supplementary Information

  1. Supplementary Information

    Supplementary Figures 1–19; Supplementary Tables 1–12; Supplementary Notes

  2. Reporting Summary

  3. Supplementary Table 1

    Metadata for all S. aureus isolates examined in the current study

  4. Supplementary Table 5

    Number of host jumps and transition rates between host-species groups and confidence intervals for all approaches used

  5. Supplementary Table 6

    Accessory genes enriched in isolates according to host-species or gain/loss of genes correlated with host-switching events

  6. Supplementary Table 8

    Functional groups of pseudogenes enriched in S. aureus by host-species

  7. Supplementary Table 11

    Functional categories (GO terms) of genes under positive selection in different host species

  8. Supplementary Table 12

    Distribution of antimicrobial resistance determinants according to host-species group

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-018-0617-0