Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transitions between phases of genomic differentiation during stick-insect speciation

Abstract

Speciation can involve a transition from a few genetic loci that are resistant to gene flow to genome-wide differentiation. However, only limited data exist concerning this transition and the factors promoting it. Here, we study phases of speciation using data from >100 populations of 11 species of Timema stick insects. Consistent with early phases of genic speciation, adaptive colour-pattern loci reside in localized genetic regions of accentuated differentiation between populations experiencing gene flow. Transitions to genome-wide differentiation are also observed with gene flow, in association with differentiation in polygenic chemical traits affecting mate choice. Thus, intermediate phases of speciation are associated with genome-wide differentiation and mate choice, but not growth of a few genomic islands. We also find a gap in genomic differentiation between sympatric taxa that still exchange genes and those that do not, highlighting the association between differentiation and complete reproductive isolation. Our results suggest that substantial progress towards speciation may involve the alignment of multi-faceted aspects of differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual overview and summary of genomic differentiation in Timema .
Figure 2: Localized genetic differentiation ( FST) in T. cristinae .
Figure 3: CHCs and genome-wide differentiation in T. cristinae .
Figure 4: Whole-genome analyses of genomic differentiation ( FST) in Timema .
Figure 5: A gap in genomic differentiation (mean genome-wide F ST ) for Timema taxa in sympatry.
Figure 6: Temporal dynamics of the evolution of sexual isolation and morphological differentiation.

Similar content being viewed by others

References

  1. Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Coyne, J. A. & Orr, H. A. Speciation 1st edn (Sinauer Associates, 2004).

    Google Scholar 

  3. Flaxman, S., Walchoder, A., Feder, J. L. & Nosil, P. Theoretical models of the influence of genomic architecture on speciation. Mol. Ecol. 23, 4074–4088 (2014).

    Article  PubMed  Google Scholar 

  4. Wu, C. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).

    Article  Google Scholar 

  5. Mallet, J. A species definition for the modern synthesis. Trends Ecol. Evol. 10, 294–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Feder, J. L., Egan, S. P. & Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Poelstra, J. W. et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344, 1410–1414 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato . Genome Res. 24, 1316–1333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nadeau, N. J. et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Phil. Trans. R. Soc. B 367, 343–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michel, A. P. et al. Widespread genomic divergence during sympatric speciation. Proc. Natl Acad. Sci. USA 107, 9724–9729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).

    Article  PubMed  Google Scholar 

  12. Shafer, A. B. A. & Wolf, J. B. W. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol. Lett. 16, 940–950 (2013).

    Article  PubMed  Google Scholar 

  13. Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Egan, S. P. et al. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol. Lett. 18, 817–825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burke, M. K. How does adaptation sweep through the genome? Insights from long-term selection experiments. Proc. R. Soc. B 279, 5029–5038 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lamichhaney, S. et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc. Natl Acad. Sci. USA 109, 19345–19350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lawniczak, M. K. N. et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science 330, 512–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gavrilets, S. Fitness Landscapes and the Origin of Species Vol. 41 (Princeton Univ. Press, 2004).

    Google Scholar 

  19. Barton, N. H. Multilocus clines. Evolution 37, 454–471 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).

    Article  PubMed  Google Scholar 

  21. Jiggins, C. D. & Mallet, J. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15, 250–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  23. Turner, T. L. & Hahn, M. W. Genomic islands of speciation or genomic islands and speciation? Mol. Ecol. 19, 848–850 (2010).

    Article  PubMed  Google Scholar 

  24. Turner, T. L., Hahn, M. W. & Nuzhdin, S. V. Genomic islands of speciation in Anopheles gambiae . PLoS Biol. 3, 1572–1578 (2005).

    Article  CAS  Google Scholar 

  25. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

    Book  Google Scholar 

  26. Yeaman, S., Aeschbacher, S. & Burger, R. The evolution of genomic islands by increased establishment probability of linked alleles. Mol. Ecol. 25, 2542–2558 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feulner, P. G. D. et al. Genomics of divergence along a continuum of parapatric population differentiation. PLoS Genet. 11, e1004966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burri, R. et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies Genome Res. 23, 1817–1828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    Article  PubMed  Google Scholar 

  32. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

    Google Scholar 

  33. Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J. C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl Acad. Sci. USA 106, 7495–7500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mallet, J., Beltran, M., Neukirchen, W. & Linares, M. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol. Biol. 7, 28 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orr, H. A. The population-genetics of speciation—the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Law, J. H. & Crespi, B. J. The evolution of geographic parthenogenesis in Timema walking-sticks. Mol. Ecol. 11, 1471–1489 (2002).

    Article  PubMed  Google Scholar 

  37. Nosil, P. Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks. Am. Nat. 169, 151–162 (2007).

    Article  PubMed  Google Scholar 

  38. Nosil, P. & Sandoval, C. P. Ecological niche dimensionality and the evolutionary diversification of stick insects. PLoS ONE 3, e1907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nosil, P. et al. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 279, 5058–5065 (2012).

    Article  Google Scholar 

  40. Hofer, T., Foll, M. & Excoffier, L. Evolutionary forces shaping genomic islands of population differentiation in humans. BMC Genomics 13, 107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sandoval, C. P. The effects of relative geographical scales of gene flow and selection on morph frequencies in the walking-stick Timema cristinae . Evolution 48, 1866–1879 (1994).

    Article  PubMed  Google Scholar 

  42. Comeault, A. A. et al. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 25, 1–7 (2015).

    Article  CAS  Google Scholar 

  43. Nosil, P. & Hohenlohe, P. A. Dimensionality of sexual isolation during reinforcement and ecological speciation in Timema cristinae stick insects. Evol. Ecol. Res. 14, 467–485 (2012).

    Google Scholar 

  44. Nosil, P. & Crespi, B. J. Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution 58, 102–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Schwander, T. et al. Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol. Biol. 13, 151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung, H. et al. A single gene affects both ecological divergence and mate choice in Drosophila . Science 343, 1148–1151 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arbuthnott, D. & Crespi, B. J. Courtship and mate discrimination within and between species of Timema walking-sticks. Anim. Behav. 78, 53–59 (2009).

    Article  Google Scholar 

  50. Grant, B. R. & Grant, P. R. Fission and fusion of Darwin’s finches populations. Phil. Trans. R. Soc. B 363, 2821–2829 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Riesch, R., Barrett-Lennard, L. G., Ellis, G. M., Ford, J. K. B. & Deecke, V. B. Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales? Biol. J. Linn. Soc. 106, 1–17 (2012).

    Article  Google Scholar 

  52. Wood, T. K. & Keese, M. C. Host-plant induced assortative mating in Enchenopa treehoppers. Evolution 44, 619–628 (1990).

    Article  PubMed  Google Scholar 

  53. Gompert, Z. et al. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23, 4555–4573 (2014).

    Article  PubMed  Google Scholar 

  54. Cummings, M. P., Neel, M. C. & Shaw, K. L. A genealogical approach to quantifying lineage divergence. Evolution 62, 2411–2422 (2008).

    Article  PubMed  Google Scholar 

  55. Buerkle, C. A. & Gompert, Z. Population genomics based on low coverage sequencing: How low should we go? Mol. Ecol. 22, 3028–3035 (2013).

    Article  CAS  Google Scholar 

  56. Fumagalli, M. et al. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195, 979–992 (2013).

    Article  PubMed Central  Google Scholar 

  57. Barton, N. H. & Gale, K. S. in Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G. ) 13–45 (Oxford Univ. Press, 1993).

  58. Derryberry, E. P., Derryberry, G. E., Maley, J. M. & Brumfield, R. T. hzar: hybrid zone analysis using an R software package. Mol. Ecol. Resour. 14, 652–663 (2014).

    Article  PubMed  Google Scholar 

  59. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  60. Baum, L. E., Petrie, T., Soules, G. & Weiss, N. A maximization technique occurring in statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970).

    Article  Google Scholar 

  61. Harte, D. HiddenMarkov: Hidden Markov Models. R package version 1.7-0 (Statistics Research Associates, accessed 14 April 2012); http://cran.at.r-project.org/web/packages/HiddenMarkov

  62. Harte, D. HiddenMarkov: Hidden Markov Models. R package version 1.8-3 (Statistics Research Associates, accessed 13 April 2015); http://cran.at.r-project.org/web/packages/HiddenMarkov

  63. Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).

    Article  PubMed  Google Scholar 

  64. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKenna, A. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blows, M. W. & Allan, R. A. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152, 826–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Rundle, H. D., Chenoweth, S. F., Doughty, P. & Blows, M. W. Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 3, e368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aitchison, J. The Statistical Analysis of Compositional Data 12th edn (Chapman & Hall, 1986).

    Book  Google Scholar 

  69. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nosil, P., Crespi, B. J. & Sandoval, C. P. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417, 440–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Rolan-Alvarez, E. & Caballero, M. Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54, 30–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  73. Li, H., The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA-sequence data. Genetics 132, 583–589 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A. L. Estimating and interpreting Fst: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Env. Stat. 7, 361–372 (2002).

    Article  Google Scholar 

  78. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, 1987).

    Book  Google Scholar 

  79. Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771 (2008).

    Article  PubMed  Google Scholar 

  84. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).

    Google Scholar 

  85. Endler, J. A. A framework for analysing colour pattern geometry: adjacent colours. Biol. J. Linn. Soc. 107, 233–253 (2012).

    Article  Google Scholar 

  86. Beuttell, K. & Losos, J. B. Ecological morphology of Caribbean anoles. Herpetol. Monogr. 13, 1–28 (1999).

    Article  Google Scholar 

  87. Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R. R. Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).

    Article  PubMed  Google Scholar 

  88. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Guillem, R. Kather, J. Stapley and T. Schwander for their advice; the Oakley-, Kuris- and Lafferty-groups at University of California Santa Barbara for their support; L. Jeanson and J. Hosegood for the phenotypic measurements and lab work; R. Marin for drawing all the figures; T. Schwander for providing the genetic crosses used for linkage mapping; the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070) for generating the whole-genome re-sequencing data; and the National Center for Genome Sequencing (USA) for the GBS data. R.R. was supported by the Human Frontier Science Program, M.M. and K.L. were supported by the Swiss National Science Foundation and P.N. was supported by the Royal Society of London. The work was funded by grants from the European Research Council (grant NatHisGen R/129639 to P.N.) and the Natural Science and Engineering Research Council of Canada (to B.J.C. and G.G.). Computing, storage and other resources from the Division of Research Computing in the Office of Research and Graduate Studies at Utah State University, as well as access to the High Performance Computing Facilities, particularly to the Iceberg HPC cluster, from the Corporate Information and Computing Services at the University of Sheffield, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.R., Z.G., M.M., G.G., J.F., B.J.C. and P.N. conceived the project. R.R., R.V., D.L., M.M., A.A.C., R.G., T.E.F., C.P.S., C.F.d.C. and P.N. collected the data. R.R., D.L., M.M., R.V., Z.G. and P.N. led the data analyses, aided by V.S.-C., K.L., C.F.d.C. and S.R.D. R.R., Z.G. and P.N. wrote the initial manuscript and all authors contributed to further writing and revisions. Z.G. and V.S.-C. organized the data archiving. R.R., M.M., D.L., R.V. and Z.G. contributed equally.

Corresponding authors

Correspondence to Rüdiger Riesch, Zach Gompert or Patrik Nosil.

Ethics declarations

Competing interests

The authors declare no competing financial interests

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 1–15; Supplementary Figures 1–4 (PDF 3977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riesch, R., Muschick, M., Lindtke, D. et al. Transitions between phases of genomic differentiation during stick-insect speciation. Nat Ecol Evol 1, 0082 (2017). https://doi.org/10.1038/s41559-017-0082

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-017-0082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing