Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Legacy effects of developmental stages determine the functional role of predators

Abstract

Predators are instrumental in structuring natural communities and ecosystem processes. The strong effects of predators are often attributed to their high trophic position in the food web. However, most predators have to grow and move up the food chain before reaching their final trophic position, and during this developmental process their traits, interactions and abundances change. Here, we show that this process of ‘moving up’ the food chain during development strongly determines the ecological role of a predator. By experimentally manipulating the succession of developmental stages of a predatory salamander in a seasonal aquatic ecosystem, we found that the effects of this apex predator on the ecosystem typically declined with age and size. Furthermore, younger, smaller predator stages had long-lasting effects on community structure and ecosystem function that determined the effects of subsequent older, larger stages. Consequently, the legacy effects of early stages largely shaped the impact of the predator on the ecosystem, which could not simply be inferred from its final trophic position. Our results highlight that accounting for all life stages when managing natural populations is crucial to preserve the functioning of natural ecosystems, especially given that early life stages of species are often particularly vulnerable to natural and anthropogenic disturbances.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatments manipulating the succession of predator stages.
Figure 2: Differences in composition of macro-invertebrates, amphibians and zooplankton across three predator time periods, PI–PIII (see Fig. 1).
Figure 3: Change in mean (±1 s.e.m.) abundance of two types (benthic algae: periphyton; pelagic algae: phytoplankton) of primary producer (top panels), and NPP and R over time as a function of predator stage sequence history (bottom panels).
Figure 4: Effect of predator stage sequence on mean (±1 s.e.m.) decomposition rate k, final macro-invertebrate biomass and total amphibian biomass.

Similar content being viewed by others

References

  1. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  2. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  Google Scholar 

  3. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  Google Scholar 

  4. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  5. Paine, R. T. The PisasterTegula interaction: prey patches, predator food preference, and intertidal community structure. Ecology, 50, 950–961 (1969).

    Article  Google Scholar 

  6. Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620 (1996).

    Article  Google Scholar 

  7. Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: size-structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).

    Article  Google Scholar 

  8. Rudolf, V. H. W., Rasmussen, N. L., Dibble, C. J. & Van Allen, B. G. Resolving the roles of body size and species identity in driving functional diversity. Proc. R. Soc. B 281, 20133203 (2014).

  9. Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size structured populations. Annu. Rev. Ecol. Syst. 15, 393–425 (1984).

    Article  Google Scholar 

  10. De Roos, A. M., Persson, L. & McCauley, E. The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol. Lett. 6, 473–487 (2003).

    Article  Google Scholar 

  11. Polis, G. A. Age structure component of niche width and intraspecific resource partitioning: can age groups function as ecological species? Am. Nat. 123, 541–564 (1984).

    Article  Google Scholar 

  12. Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional differences among species and ecosystem processes. Nat. Commun. 4, 2318 (2013).

  13. Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article  Google Scholar 

  14. Miller, T. E., terHorst, C. P. & Burns, J. H. The ghost of competition present. Am. Nat. 173, 347–353 (2009).

    Article  CAS  Google Scholar 

  15. Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Article  Google Scholar 

  16. Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).

    Article  CAS  Google Scholar 

  17. Persson, L. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85, 385–397 (1999).

    Article  Google Scholar 

  18. Persson, L., Bystrom, P., Wahlstrom, E. & Westman, E. Trophic dynamics in a whole lake experiment: size-structured interactions and recruitment variation. Oikos 106, 263–274 (2004).

    Article  Google Scholar 

  19. Hjelm, J. & Persson, L. Size-dependent attack rate and handling capacity: inter-cohort competition in a zooplanktivorous fish. Oikos 95, 520–532 (2001).

    Article  Google Scholar 

  20. Woodward, G., Speirs, D. C., Hildrew, A. G. & Hal, C. Quantification and resolution of a complex, size-structured food web. Adv. Ecol. Res. 36, 85–135 (2005).

    Article  Google Scholar 

  21. Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).

    Article  Google Scholar 

  22. Drake, J. A. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137, 1–26 (1991).

    Article  Google Scholar 

  23. Fukami, T. & Morin, P. J. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424, 423–426 (2003).

    Article  CAS  Google Scholar 

  24. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article  Google Scholar 

  25. Persson, L., Bystrom, P. & Wahlstrom, E. Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81, 1058–1071 (2000).

    Article  Google Scholar 

  26. Miller, T. E. X. & Rudolf, V. H. W. Thinking inside the box: community-level consequences of stage-structured populations. Trends Ecol. Evol. 26, 457–466 (2011).

    Article  Google Scholar 

  27. Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    Article  CAS  Google Scholar 

  28. Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl Acad. Sci. USA 104, 17430–17434 (2007).

    Article  CAS  Google Scholar 

  29. Van Allen, B. G. & Rudolf, V. H. W. Carry-over effects drive competitive dominance in spatially structured environments. Proc. Natl Acad. Sci. USA 113, 6939–6944 (2016).

    Article  CAS  Google Scholar 

  30. Van Allen, B. G. & Rudolf, V. H. W. Habitat-mediated carry-over effects lead to context dependent outcomes of species interactions. J. Anim. Ecol. 84, 1646–1656 (2015).

    Article  Google Scholar 

  31. Persson, L. et al. Gigantic cannibals driving a whole-lake trophic cascade. Proc. Natl Acad. Sci. USA 100, 4035–4039 (2003).

    Article  CAS  Google Scholar 

  32. Reichstein, B., Persson, L. & De Roos, A. M. Ontogenetic asymmetry modulates population biomass production and response to harvest. Nat. Commun. 6, 6441 (2015).

  33. Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article  CAS  Google Scholar 

  34. Garcia, S. M. et al. Reconsidering the consequences of selective fisheries. Science 335, 1045–1047 (2012).

    Article  CAS  Google Scholar 

  35. Berrill, M., Coulson, D., McGillivray, L. & Pauli, B. Toxicity of endosulfan to aquatic stages of anuran amphibians. Environ. Toxicol. Chem. 17, 1738–1744 (1998).

    Article  CAS  Google Scholar 

  36. Fauth, J. E. Identifying potential keystone species from field data – an example from temporary ponds. Ecol. Lett. 2, 36–43 (1999).

    Article  Google Scholar 

  37. Morin, P. J. Predation, competition, and the composition of larval anuran guilds. Ecol. Monogr. 53, 119–138 (1983).

    Article  Google Scholar 

  38. Morin, P. J. Functional redundancy, nonadditive interactions, and supply-side dynamics in experimental pond communities. Ecology 76, 133–149 (1995).

    Article  Google Scholar 

  39. Chalcraft, D. R. & Resetarits, W. J. Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84, 2407–2418 (2003).

    Article  Google Scholar 

  40. Davic, R. D. & Welsh, H. H. On the ecological roles of salamanders. Annu. Rev. Ecol. Evol. Syst. 35, 405–434 (2004).

    Article  Google Scholar 

  41. Caldwell, J. P., Thorp, J. H. & Jervey, T. O. Predator–prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46, 285–289 (1980).

    Article  CAS  Google Scholar 

  42. Urban, M. C. Salamander evolution across a latitudinal cline in gape-limited predation risk. Oikos 117, 1037–1049 (2008).

    Article  Google Scholar 

  43. Leff, L. G. & Bachmann, M. D. Ontogenetic changes in predatory behavior of larval tiger salamanders (Ambystoma tigrinum). Can. J. Zool. 64, 1337–1344 (1986).

    Article  Google Scholar 

  44. McWilliams, S. R. & Bachmann, M. Foraging ecology and prey preference of pond-form larval small-mouthed salamanders, Ambystoma texanum . Copeia 1989, 948–961 (1989).

    Article  Google Scholar 

  45. Wetzel, R. G. & Likens, G. E. Limnological Analyses 3rd edn (Springer, 2000).

    Book  Google Scholar 

  46. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E. & Franson, M. A. H. Standard Methods for Examination of Water and Wastewater (American Public Health Association, American Water Works Association and Water Environment Federation, 2005).

    Google Scholar 

  47. Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North. Am. Benthol. Soc. 18, 308–343 (1999).

    Article  Google Scholar 

  48. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  49. Vegan: Community Ecology Package. R package version 2.0-4 (R Foundation for Statistical Computing, 2012); https://cran.r-project.org/web/packages/vegan/index.html

Download references

Acknowledgements

We thank A. Roman, C. Dibble, M. Braun, E. Matson, J. Ohm and G. Ross for help with field work and sample processing, and C. Dibble, B. Toscano and N. Rasmussen for helpful comments on the manuscripts. This work was supported by NSF DEB-1256860 and NSF DEB-0841686 to V.H.W.R.

Author information

Authors and Affiliations

Authors

Contributions

V.H.W.R. and B.G.V. conducted the experiment together. V.H.W.R. designed the experiment, analysed the data and wrote manuscript with significant input from B.G.V.

Corresponding author

Correspondence to Volker H. W. Rudolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Tables 1 and 2, Supplementary Figure 1. (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolf, V., Van Allen, B. Legacy effects of developmental stages determine the functional role of predators. Nat Ecol Evol 1, 0038 (2017). https://doi.org/10.1038/s41559-016-0038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing