Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards more predictive and interdisciplinary climate change ecosystem experiments

Abstract

Despite great advances, experiments concerning the response of ecosystems to climate change still face considerable challenges, including the high complexity of climate change in terms of environmental variables, constraints in the number and amplitude of climate treatment levels, and the limited scope of responses and interactions covered. Drawing on the expertise of researchers from a variety of disciplines, this Perspective outlines how computational and technological advances can help in designing experiments that can contribute to overcoming these challenges, and also outlines a first application of such an experimental design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the two climate change gradient designs in the UHasselt Ecotron experiment.
Fig. 2: Impact pathway showing the reasoning behind the integration of scientific disciplines in the UHasselt Ecotron experiment.
Fig. 3: Measured variables in the UHasselt Ecotron experiment and links with ecosystem functions, services and values.

Similar content being viewed by others

References

  1. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    Article  CAS  Google Scholar 

  2. Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article  CAS  Google Scholar 

  3. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  4. Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10, 4–10 (2015).

    Article  Google Scholar 

  5. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  6. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  CAS  Google Scholar 

  7. Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island, 2005); https://doi.org/10.1196/annals.1439.003

    Article  Google Scholar 

  8. Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26, 236–241 (2011).

    Article  Google Scholar 

  9. Stewart, R. I. A. et al. Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. 48, 71–181 (2013).

    Article  Google Scholar 

  10. Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    Article  Google Scholar 

  11. Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J. & Seneviratne, S. I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 6, 6443 (2015).

    Article  CAS  Google Scholar 

  12. Thiery, W. et al. Hazardous thunderstorm intensification over Lake Victoria. Nat. Commun. 7, 12786 (2016).

    Article  CAS  Google Scholar 

  13. Berendse, F., Schmitz, M. & Visser, W. De Experimental manipulation of succession in heathland ecosystems. Oecologia 100, 38–44 (1994).

    Article  Google Scholar 

  14. Backhaus, S. et al. Recurrent mild drought events increase resistance toward extreme drought stress. Ecosystems 17, 1068–1081 (2014).

    Article  Google Scholar 

  15. Verburg, P. S. J. et al. Impacts of an anomalously warm year on soil nitrogen availability in experimentally manipulated intact tallgrass prairie ecosystems. Glob. Change Biol. 15, 888–900 (2009).

    Article  Google Scholar 

  16. Roy, J. et al. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc. Natl Acad. Sci. USA 113, 6224–6229 (2016).

    Article  CAS  Google Scholar 

  17. Cantarel, A. M. & Bloor, J. M. G. Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. J. Veg. Sci. 24, 113–126 (2013).

    Article  Google Scholar 

  18. Kreyling, J. et al. To replicate, or not to replicate — that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. https://doi.org/10.1111/ele.13134 (2018).

    Article  Google Scholar 

  19. Zhou, X., Weng, E. & Luo, Y. Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecol. Appl. 18, 453–466 (2008).

    Article  CAS  Google Scholar 

  20. Luo, Y. et al. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol. 14, 1986–1999 (2008).

    Article  Google Scholar 

  21. Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. https://doi.org/10.1890/140174 (2015).

    Article  Google Scholar 

  22. Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article  Google Scholar 

  23. Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  Google Scholar 

  24. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

  25. Hein, C. J. et al. Overcoming early career barriers to interdisciplinary climate change research. WIREs Clim. Change 9, 1–18 (2018).

    Article  Google Scholar 

  26. Xu, X., Goswami, S., Gulledge, J., Wullschleger, S. D. & Thornton, P. E. Interdisciplinary research in climate and energy sciences. WIREs Energy Environ. 5, 49–56 (2016).

    Article  Google Scholar 

  27. Sievanen, L., Campbell, L. M. & Leslie, H. M. Challenges to interdisciplinary research in ecosystem-based management. Conserv. Biol. 26, 315–323 (2012).

    Article  Google Scholar 

  28. Abiven, S. et al. Integrative research efforts at the boundary of biodiversity and global change research. Curr. Opin. Environ. Sustain. 29, 215–222 (2017).

    Article  Google Scholar 

  29. Bromham, L., Dinnage, R. & Hua, X. Interdisciplinary research has consistently lower funding success. Nature 534, 684–687 (2016).

    Article  CAS  Google Scholar 

  30. Turner, L. M. et al. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs. Elem. Sci. Anth. 5, 14 (2017).

    Article  Google Scholar 

  31. Hellsten, I. & Leydesdorff, L. The construction of interdisciplinarity: the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977–2013. J. Assoc. Inf. Sci. Technol. 67, 2181–2193 (2016).

  32. Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified? J. Appl. Ecol. 54, 358–370 (2017).

    Article  Google Scholar 

  33. Clobert, J. et al. How to integrate experimental research approaches in ecological and environmental studies: AnaEE France as an example. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00043 (2018).

  34. Mougin, C. et al. A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France. Environ. Sci. Pollut. Res. 22, 16215–16228 (2015).

    Article  Google Scholar 

  35. Eisenhauer, N. & Türke, M. From climate chambers to biodiversity chambers. Front. Ecol. Environ. 16, 136–137 (2018).

    Article  Google Scholar 

  36. Milcu, A. et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol. Lett. 17, 435–444 (2014).

    Article  Google Scholar 

  37. Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).

    Article  Google Scholar 

  38. Van der Biest, K. et al. Evaluation of the accuracy of land-use based ecosystem service assessments for different thematic resolutions. J. Environ. Manag. 156, 41–51 (2015).

    Article  Google Scholar 

  39. Polasky, S. & Segerson, K. Integrating ecology and economics in the study of ecosystem services: some lessons learned. Annu. Rev. Resour. Econ. 1, 409–434 (2009).

    Article  Google Scholar 

  40. Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  41. Braat, L. C. & de Groot, R. The ecosystem services agenda: bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 1, 4–15 (2012).

    Article  Google Scholar 

  42. Plaas, E. et al. Towards valuation of biodiversity in agricultural soils: a case for earthworms. Ecol. Econ. 159, 291–300 (2019).

    Article  Google Scholar 

  43. Brouwers, J. et al. MIRA Climate Report 2015: About Observed and Future Climate Changes in Flanders and Belgium (Flanders Environment Agency, 2015); https://doi.org/10.13140/RG.2.1.2055.8809

  44. Klein Tank, A. M. G. et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22, 1441–1453 (2002).

    Article  Google Scholar 

  45. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article  Google Scholar 

  46. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  CAS  Google Scholar 

  47. UNFCCC. Paris Climate Change Conference November 2015, COP 21. Adoption of the Paris Agreement. Proposal by the President 21932, 32 (UNFCCC, 2015).

  48. Smith, J. et al. Estimating changes in Scottish soil carbon stocks using ECOSSE. II. Application. Clim. Res. 45, 193–205 (2010).

    Article  Google Scholar 

  49. Schaubroeck, T. et al. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest. J. Environ. Manag. 173, 79–94 (2016).

    Article  CAS  Google Scholar 

  50. Hunter, J. E. & Schmidt, F. L. Cumulative research knowledge and social policy formulation: the critical role of meta-analysis. Psychol. Public Policy Law 2, 324–347 (1996).

    Article  Google Scholar 

  51. Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).

    Article  Google Scholar 

  52. Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. 62, 377–389 (2012).

  53. De Boeck, H., Dreesen, F. E., Janssens, I. A. & Nijs, I. Climatic characteristics of heat waves and their simulation in plant experiments. Glob. Change Biol. 16, 1992–2000 (2010).

    Article  Google Scholar 

  54. Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. https://doi.org/10.1890/110279 (2013).

    Article  Google Scholar 

  55. Lind, E. M. et al. Life-history constraints in grassland plant species : a growth-defence trade-off is the norm. Ecol. Lett. 16, 513–521 (2013).

    Article  Google Scholar 

  56. Keller, M., Schimel, D. S., Hargrove, W. W. & Hoffman, F. M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 6, 282–284 (2008).

    Article  Google Scholar 

  57. Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012).

    Article  Google Scholar 

  58. Richards, M. et al. High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom. GCB Bioenergy 44, 627–644 (2017).

    Article  CAS  Google Scholar 

  59. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Flemish government (through Hercules Stichting big infrastructure and the Fund for Scientific Research Flanders project G0H4117N) and LSM (Limburg Sterk Merk, project 271) for providing funds to build the UHasselt Ecotron; Hasselt University for both funding and policy support (project BOF12BR01 and Methusalem project 08M03VGRJ); and the ecotron research committee for comments on the experimental design. We also thank Regional Landscape Kempen and Maasland for its collaboration and support. N.W., S.L., A.N. and I.V. are funded by Research Foundation-Flanders (FWO).

Author information

Authors and Affiliations

Authors

Contributions

F.R. and R.M. took the lead in writing the manuscript and received input from all co-authors. The initial conceptualization of this manuscript was discussed during a consortium meeting. All authors proofread and provided their input to different draft versions and gave their final approval for submission.

Corresponding author

Correspondence to Francois Rineau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–4, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rineau, F., Malina, R., Beenaerts, N. et al. Towards more predictive and interdisciplinary climate change ecosystem experiments. Nat. Clim. Chang. 9, 809–816 (2019). https://doi.org/10.1038/s41558-019-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0609-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology