Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low clouds link equilibrium climate sensitivity to hydrological sensitivity

Abstract

Equilibrium climate sensitivity (ECS) and hydrological sensitivity describe the global mean surface temperature and precipitation responses to a doubling of atmospheric CO2. Despite their connection via the Earth’s energy budget, the physical linkage between these two metrics remains controversial. Here, using a global climate model with a perturbed mean hydrological cycle, we show that ECS and hydrological sensitivity per unit warming are anti-correlated owing to the low-cloud response to surface warming. When the amount of low clouds decreases, ECS is enhanced through reductions in the reflection of shortwave radiation. In contrast, hydrological sensitivity is suppressed through weakening of atmospheric longwave cooling, necessitating weakened condensational heating by precipitation. These compensating cloud effects are also robustly found in a multi-model ensemble, and further constrained using satellite observations. Our estimates, combined with an existing constraint to clear-sky shortwave absorption, suggest that hydrological sensitivity could be lower by 30% than raw estimates from global climate models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of Earth’s radiative budgets at the TOA and surface.
Fig. 2: Inverse relationship between ECS and η in various climate model ensembles.
Fig. 3: Sources of spread in λ and η across the PerSE P4K experiments.
Fig. 4: Illustration of low-cloud changes connecting climate feedback with the atmospheric energy budget.
Fig. 5: Process-level linkage between cloud feedbacks contributing to ECS and η.
Fig. 6: Emergent constraint on surface longwave CRE feedback and revisions to η.

Similar content being viewed by others

Data availability

The CMIP5 data supporting the findings of this study are available in the Supplementary Information and also from http://cmip-pcmdi.llnl.gov/cmip5/. The raw outputs of the MIROC5 experiments are available from the corresponding author upon request.

References

  1. Stevens, B. & Bony, S. Water in the atmosphere. Phys. Today 66, 29–34 (2013).

    Article  CAS  Google Scholar 

  2. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  CAS  Google Scholar 

  3. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    Article  CAS  Google Scholar 

  4. Andrews, T., Forster, P. M. & Groegory, J. M. A surface energy perspective on climate change. J. Clim. 22, 2557–2570 (2009).

    Article  Google Scholar 

  5. Kamae, Y., Watanabe, M., Ogura, T., Yoshimori, M. & Shiogama, H. Rapid adjustments of cloud and hydrological cycle to increasing CO2: a review. Curr. Clim. Change Rep. 1, 103–113 (2015).

    Article  Google Scholar 

  6. Sherwood, S. C. et al. Adjustments in the forcing-feedback framework for understanding climate change. Bull. Am. Meteorol. Soc 96, 217–228 (2015).

    Article  Google Scholar 

  7. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  8. Maslin, M. & Austin, P. Climate models at their limit? Nature 486, 183–184 (2012).

    Article  CAS  Google Scholar 

  9. Fläschner, D. et al. Understanding the intermodal spread in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).

    Article  Google Scholar 

  10. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  11. Stephens, G. L. & Ellis, T. D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21, 6141–6155 (2008).

    Article  Google Scholar 

  12. Lambert, F. H. & Webb, M. J. Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett. 35, L16706 (2008).

    Article  CAS  Google Scholar 

  13. Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, L14701 (2010).

    Article  CAS  Google Scholar 

  14. Pendergrass, A. G. & Hartmann, D. L. The atmospheric energy constraint on global mean precipitation change. J. Clim. 27, 757–768 (2014).

    Article  Google Scholar 

  15. Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6, 447–451 (2013).

    Article  CAS  Google Scholar 

  16. DeAngelis, A. M., Qu, X., Zelinka, M. D. & Hall, A. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).

    Article  CAS  Google Scholar 

  17. Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earths Future 4, 512–522 (2016).

    Article  Google Scholar 

  18. Roe, G. H. & Baker, M. B. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007).

    Article  CAS  Google Scholar 

  19. Dessler, A. E. Observations of climate feedbacks over 2000–10 and comparisons to climate models. J. Clim. 26, 333–342 (2013).

    Article  Google Scholar 

  20. Zelinka, M. D. et al. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Clim. 26, 5007–5027 (2013).

    Article  Google Scholar 

  21. Vial, J., Dufresne, J.-L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dynam. 41, 3339–3362 (2013).

    Article  Google Scholar 

  22. Caldwell, P. M., Zelinka, M. D., Taylor, K. E. & Marvel, K. Quantifying the sources of intermodel spread in equilibrium climate sensitivity. J. Clim. 29, 513–524 (2016).

    Article  Google Scholar 

  23. Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  24. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett. 42, 7767–7775 (2015).

    Article  Google Scholar 

  25. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

    Article  CAS  Google Scholar 

  26. Bretherton, C. S. Insights into low-latitude cloud feedbacks from high-resolution models. Phil. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  27. Zelinka, M. D., Randall, D. A., Webb, M. J. & Klein, S. A. Clearing clouds of uncertainty. Nat. Clim. Change 7, 674–678 (2017).

    Article  Google Scholar 

  28. Brient, F. & Schneider, T. Constraints on climate sensitivity from space-based measurements of low-cloud reflection. J. Clim. 29, 5821–5835 (2016).

    Article  Google Scholar 

  29. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).

    Article  CAS  Google Scholar 

  30. O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation under climate change. Surv. Geophys. 33, 585–608 (2012).

    Article  Google Scholar 

  31. Su, H. et al. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun. 8, 15771 (2017).

    Article  CAS  Google Scholar 

  32. Takahashi, K. The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J. Clim. 22, 5667–5675 (2009).

    Article  Google Scholar 

  33. Previdi, M. Radiative feedbacks on global precipitation. Environ. Res. Lett. 5, 025211 (2010).

    Article  CAS  Google Scholar 

  34. Mauritsen, T. & Stevens, B. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci. 8, 346–351 (2015).

    Article  CAS  Google Scholar 

  35. Lindzen, R. S., Chou, M. D. & Hou, A. Y. Does the Earth have an adaptive infrared iris? Bull. Am. Meteorol. Soc. 82, 417–432 (2001).

    Article  Google Scholar 

  36. Bony, S. et al. Thermodynamic control of anvil cloud amount. Proc. Natl Acad. Sci. USA 113, 8927–8932 (2016).

    Article  CAS  Google Scholar 

  37. Webb, M. J., Lock, A. P. & Lambert, F. H.. Interactions between hydrological sensitivity, radiative cooling, stability, and low-level cloud amount feedback. J. Clim. 31, 1833–1850. .

    Article  Google Scholar 

  38. Collins, M. et al. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim. Dynam. 36, 1737–1766 (2011).

    Article  Google Scholar 

  39. Shiogama, H. et al. Physics parameter uncertainty and observational constraints of climate feedback: an ensemble coupled atmosphere–ocean GCM without flux corrections. Clim. Dynam. 39, 3041–3056 (2012).

    Article  Google Scholar 

  40. Watanabe, M. et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).

    Article  Google Scholar 

  41. Klein, S. A. & Harmann, D. L. The seasonal cycle of low stratiform clouds. J. Clim. 6, 1587–1606 (1993).

    Article  Google Scholar 

  42. Stephens, G. L. et al. The global character of the flux of downward longwave radiation. J. Clim. 25, 2329–2340 (2012).

    Article  Google Scholar 

  43. Kato, S. et al. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res. 116, D19209 (2011).

    Article  Google Scholar 

  44. Allan, R. P. et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. 35, 533–552 (2013).

    Article  Google Scholar 

  45. Kramer, R. J. & Soden, B. J. The sensitivity of the hydrological cycle to internal climate variability versus anthropogenic climate change. J. Clim. 29, 3661–3673 (2016).

    Article  Google Scholar 

  46. Forster, P. M. Inference of climate sensitivity from analysis of Earth’s energy budget. Annu. Rev. Earth Planet. Sci. 44, 85–106 (2016).

    Article  CAS  Google Scholar 

  47. Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).

    Article  Google Scholar 

  48. Suzuki, K., Stephens, G. L. & Golaz, J.-C. Significance of aerosol radiative effect in energy balance control on global precipitation change. Atmos. Sci. Lett. 18, 389–395 (2017).

    Article  Google Scholar 

  49. Pincus, R. et al. Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys. Res. Lett. 42, 5485–5492 (2015).

    Article  Google Scholar 

  50. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  51. Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Google Scholar 

  52. Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).

    Google Scholar 

  53. Ringer, M. A., Andrews, T. & Webb, M. J. Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere–ocean climate change experiments. Geophys. Res. Lett. 41, 4035–4042 (2014).

    Article  Google Scholar 

  54. Nam, C., Bony, S., Dufresne, J.-L. & Chepfer, H. The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett. 39, L21801 (2012).

    Article  Google Scholar 

  55. Ham, Y. G., Kug, J. S., Choi, J. Y., Jin, F.-F. & Watanabe, M. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming. Nat. Clim. Change 8, 64–69 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the modelling groups, PCMDI and WCRP’s WGCM for efforts in making the CMIP5 multi-model dataset available. We thank M. Webb and H. Su for helpful comments. This work was supported by Grant-in-Aid 26247079 and the Integrated Research Program for Advancing Climate Models from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The model simulations were performed using Earth Simulator at the Japan Agency for Marine-Earth Science and Technology and the NEC SX at the National Institute for Environmental Studies, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.W. designed the research. H.S. and M.W. conducted the numerical experiments. M.W. and Y.K. performed the analysis and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Masahiro Watanabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Kamae, Y., Shiogama, H. et al. Low clouds link equilibrium climate sensitivity to hydrological sensitivity. Nature Clim Change 8, 901–906 (2018). https://doi.org/10.1038/s41558-018-0272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0272-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing