Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Residual fossil CO2 emissions in 1.5–2 °C pathways

Abstract

The Paris Agreement—which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C—has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850–1,150 GtCO2 during 2016–2100, despite carbon prices of US$130–420 per tCO2 by 2030. Thus, 640–950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160–330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of global and sectoral emissions.
Fig. 2: Indicators of power-sector decarbonization.
Fig. 3: Mitigation indicators of demand-side transformation in 2050 for the industry, buildings and transport sectors, as well as the cross-sectoral totals.
Fig. 4: Sectoral cumulative emissions under early versus delayed strengthening of climate policy ambition.

Similar content being viewed by others

References

  1. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  Google Scholar 

  2. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, 1–5 (2008).

    Article  CAS  Google Scholar 

  3. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  4. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  5. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  6. Jackson, R. B. et al. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 12, 110202 (2017).

    Article  Google Scholar 

  7. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  8. Iyer, G. C. et al. The contribution of Paris to limit global warming to 2 °C. Environ. Res. Lett. 10, 125002 (2015).

    Article  CAS  Google Scholar 

  9. Fujimori, S. et al. Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus 5, 1620 (2016).

    Article  Google Scholar 

  10. Rogelj, J. et al. Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. 8, e15748 (2017).

    Article  CAS  Google Scholar 

  11. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Article  CAS  Google Scholar 

  12. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014).

    Article  Google Scholar 

  13. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there-energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369–382 (2014).

    Article  Google Scholar 

  14. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  CAS  Google Scholar 

  15. Riahi, K. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Article  Google Scholar 

  16. Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).

    Article  Google Scholar 

  17. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  Google Scholar 

  18. Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Article  CAS  Google Scholar 

  19. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

    Article  Google Scholar 

  20. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carboncycle models with a simpler model, MAGICC6—part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  21. Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Article  Google Scholar 

  22. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Article  CAS  Google Scholar 

  23. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article  Google Scholar 

  24. Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–59 (2012).

    Article  CAS  Google Scholar 

  25. Luderer, G. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Clim. Change 123, 427–441 (2014).

    Article  Google Scholar 

  26. Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations (International Energy Agency, 2017).

  27. van Vuuren, D. P. et al. Carbon budgets and energy transition pathways. Environ. Res. Lett. 11, 075002 (2016).

    Article  CAS  Google Scholar 

  28. Edelenbosch, O. Y. et al. Decomposing passenger transport futures: comparing results of global integrated assessment models. Transp. Res. D Transp. Environ. 55, 281–293 (2017).

    Article  Google Scholar 

  29. Edelenbosch, O. Y. et al. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy 122, 701–710 (2017).

    Article  Google Scholar 

  30. Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2016).

    Article  Google Scholar 

  31. Kermeli, K., Graus, W. H. J. & Worrell, E. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector. Energy Effic. 7, 987–1011 (2014).

    Article  Google Scholar 

  32. Sugiyama, M. Climate change mitigation and electrification. Energy Policy 44, 464–468 (2012).

    Article  Google Scholar 

  33. Global Electric Vehicle Outlook 2016 (International Energy Agency, 2016).

  34. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  35. Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

    Article  CAS  Google Scholar 

  36. Fischedick, M. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2014).

  37. Banerjee, R. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 8 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).

  38. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    Article  CAS  Google Scholar 

  39. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2014).

    Article  Google Scholar 

  40. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

    Article  CAS  Google Scholar 

  41. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Article  Google Scholar 

  42. Luderer, G., Bertram, C., Calvin, K., De Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Clim. Change 136, 127–140 (2016).

    Article  Google Scholar 

  43. Clarke, L. et al. International climate policy architectures: overview of the EMF-22 International Scenarios. Energy Econ. 31, S64–S81 (2009).

    Article  Google Scholar 

  44. Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  45. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  46. Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 17, 1–25 (2017).

    Article  Google Scholar 

  47. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    Article  CAS  Google Scholar 

  48. Rose, S. K. et al. Bioenergy in energy transformation and climate management. Clim. Change 123, 477–493 (2013).

    Article  Google Scholar 

  49. den Boer, E., Aarnink, S., Kleiner, F. & Pagenkopf, J. Zero Emissions Trucks: An Overview of State-of-the-art Technologies and Their Potential (CE Delft, 2013).

  50. Kuramochi, T., Ram¡rez, A., Turkenburg, W. & Faaij, A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog. Energy Combust. Sci. 38, 87–112 (2012).

    Article  CAS  Google Scholar 

  51. Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Thesis, Univ. Kassel (2009).

  52. Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the economics of climate change. Environ. Resour. Econ. 62, 329–357 (2015).

    Article  Google Scholar 

  53. Luderer, G. et al. Deep Decarbonisation Towards 1.5°C2°C Stabilisation: Policy Findings from the ADVANCE Project (ADVANCE consortium, Potsdam Institute for Climate Impact Research, 2016).

  54. Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

    Article  Google Scholar 

  55. Luderer, G. et al. Assessment of wind and solar power in global low-carbon energy scenarios: an introduction. Energy Econ. 64, 542–551 (2017).

    Article  Google Scholar 

  56. Vrontisi, Z. et al. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment. Environ. Res. Lett. 13, 044039 (2018).

    Article  Google Scholar 

  57. Fujimori, S., Masui, T. & Matsuoka, Y. Development of a global computable general equilibrium model coupled with detailed energy end-use technology . Appl. Energy 128, 296–306 (2014).

    Article  Google Scholar 

  58. Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [Basic] Manual Discussion Paper No. 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012).

  59. Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 6, 685–699 (2014).

    Article  Google Scholar 

  60. Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).

    Article  CAS  Google Scholar 

  61. McJeon, H. et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482–485 (2014).

    Article  CAS  Google Scholar 

  62. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  CAS  Google Scholar 

  63. Edmonds, J., Clarke, J., Dooley, J., Kim, S. H. & Smith, S. J.. Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies. Energy Econ. 26, 517–537 (2004).

    Article  Google Scholar 

  64. Sands, R. D. & Leimbach, M. Modeling agriculture and land use in an integrated assessment framework. Clim. Change 56, 185–210 (2003).

    Article  CAS  Google Scholar 

  65. Edmonds, J. & Reilly, J. Global energy and CO2 to the year 2050. Energy J. 4, 21–37 (1983).

    Article  Google Scholar 

  66. Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J. & Wise, M. The objECTS framework for integrated assessment: hybrid modeling of transportation. Energy J. 27, 63–91 (2006).

    Google Scholar 

  67. Stehfest, E., van Vuuren, D., Bouwman, L. & Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (Netherlands Environmental Assessment Agency (PBL), 2014).

  68. Krey, V. et al. MESSAGE-GLOBIOM 1.0 Documentation (International Institute for Applied Systems Analysis, 2016).

  69. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  70. Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).

    Article  Google Scholar 

  71. Riahi, K. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 17 (International Institute for Applied Systems Analysis, Cambridge Univ. Press, 2012).

  72. Messner, S. & Strubegger, M. User’s Guide for MESSAGE III (International Institute for Applied Systems Analysis, 1995).

  73. Messner, S. & Schrattenholzer, L. MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25, 267–282 (2000).

    Article  Google Scholar 

  74. Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Article  Google Scholar 

  75. Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

    Article  Google Scholar 

  76. Kindermann, G. E., Obersteiner, M., Rametsteiner, E. & McCallum, I. Predicting the deforestation-trend under different carbon-prices. Carbon Balance Manag. 1, 15 (2006).

    Article  Google Scholar 

  77. Gusti, M. An algorithm for simulation of forest management decisions in the global forest model. Shtuchn. Intel. 4, 45–49 (2010).

    Google Scholar 

  78. Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

    Article  Google Scholar 

  79. Rao, S. et al. Better air for better health: forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23, 1122–1130 (2013).

    Article  Google Scholar 

  80. Global Mitigation of Non-CO 2 Greenhouse Gases: 2010–2030 Report EPA-430-R-13-011 (EPA, 2013).

  81. Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).

    Google Scholar 

  82. Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

    Article  CAS  Google Scholar 

  83. Strefler, J., Luderer, G., Aboumahboub, T. & Kriegler, E. Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Clim. Change 125, 319–331 (2014).

    Article  CAS  Google Scholar 

  84. Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. WITCH-a world induced technical change hybrid model. Energy J. 27, 13–37 (2006).

    Google Scholar 

  85. Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways Working Paper No. 42.2016 (Fondazione Eni Enrico Mattei, 2016).

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Programme FP7/2007-2013 under grant agreement no. 308329 (ADVANCE) as well as the Horizon 2020 Research and Innovation Programme under grant agreement no. 642147 (CD-LINKS). G.L., R.C.P. and M.P. were also supported by ENavi, one of the four Kopernikus Projects for the Energy Transition funded by the German Federal Ministry of Education and Research (BMBF). J.R. acknowledges the support of the Oxford Martin School Visiting Fellowship programme. The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

G.L., Z.V., V.K., E.K., K.R., B.S. and D.P.V.V. designed the research and scenarios; C.B., O.Y.E., R.C.P., H.S.D.B., L.D., J.E., O.F., S.F., P.H., G.I., A.K., K.K. and M.P. performed scenario modelling work; J.R. performed climate analysis; G.L. performed scenario data analysis in collaboration with C.B. and M.P.; G.L. created the figures and wrote the paper with inputs and feedback from all authors.

Corresponding author

Correspondence to Gunnar Luderer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–3, Supplementary Figures 1–18, Supplementary Tables 1–3, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luderer, G., Vrontisi, Z., Bertram, C. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Clim Change 8, 626–633 (2018). https://doi.org/10.1038/s41558-018-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0198-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing