Abstract

The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

  2. 2.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment Design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

  3. 3.

    Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  4. 4.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

  5. 5.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

  6. 6.

    O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

  7. 7.

    van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

  8. 8.

    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

  9. 9.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

  10. 10.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

  11. 11.

    Fujimori, S. et al. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob. Environ. Change 42, 268–283 (2017).

  12. 12.

    Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

  13. 13.

    Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

  14. 14.

    Decision 1/CP.16 The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-term Cooperative Action Under the Convention (UNFCCC, 2010).

  15. 15.

    Paris Agreement (UNFCCC, 2015).

  16. 16.

    Emmerling, J. et al. The WITCH 2016 model — documentation and implementation of the Shared Socioeconomic Pathways. FEEM Working Paper 42.2016 (2016).

  17. 17.

    O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

  18. 18.

    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

  19. 19.

    Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

  20. 20.

    Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

  21. 21.

    Kriegler, E. et al. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).

  22. 22.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

  23. 23.

    Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2016).

  24. 24.

    Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

  25. 25.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  26. 26.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  27. 27.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5, 519–527 (2015).

  28. 28.

    MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

  29. 29.

    Schneider von Deimling, T. et al. Estimating the near-surface permafrost–carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

  30. 30.

    Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

  31. 31.

    Popp, A. et al. in Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

  32. 32.

    Clarke, L. et al. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6, 413–510 (IPCC, Cambridge Univ. Press, 2014).

  33. 33.

    Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

  34. 34.

    Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

  35. 35.

    Bauer, N. et al. Shared Socio-Economic Pathways of the energy sector — quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

  36. 36.

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7, 916–944 (2015).

  37. 37.

    Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2016).

  38. 38.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11, 811–922 (IPCC, Cambridge Univ. Press, 2014).

  39. 39.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

  40. 40.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

  41. 41.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

  42. 42.

    Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

  43. 43.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

  44. 44.

    Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

  45. 45.

    Tavoni, M. & Tol, R. Counting only the hits? The risk of underestimating the costs of stringent climate policy. Climatic Change 100, 769–778 (2010).

  46. 46.

    Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

  47. 47.

    Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133–7142 (2016).

  48. 48.

    Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

  49. 49.

    Su, X. et al. Emission pathways to achieve 2.0 °C and 1.5 °C climate targets. Earths Future 5, 592–604 (2017).

  50. 50.

    Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

  51. 51.

    Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Last chance for carbon capture and storage. Nat. Clim. Change 3, 105–111 2013).

  52. 52.

    Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

  53. 53.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge Univ. Press, 2014).

  54. 54.

    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).

  55. 55.

    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

  56. 56.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

  57. 57.

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

  58. 58.

    Claudia, T., Brian, O. N. & Jean-François, L. Sensitivity of regional climate to global temperature and forcing. Environ. Res. Lett. 10, 074001 (2015).

  59. 59.

    Hendriks C., Graus W. & Van Bergen F. Global Carbon Dioxide Storage Potential and Costs Report No. EEP-02001 (Ecofys, 2004).

  60. 60.

    Kriegler, E. et al. Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Social. Change 90, 45–61 (2015).

  61. 61.

    Decision 24/CP.19. Revision of the UNFCCC Reporting Guidelines on Annual Inventories for Parties included in Annex I to the Convention 1–54 (UNFCCC, 2013).

  62. 62.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  63. 63.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

  64. 64.

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

  65. 65.

    Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of potentially lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 031003 (2014).

  66. 66.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–33 (Cambridge Univ. Press, 2014).

Download references

Acknowledgements

We thank the International Institute for Applied Systems Analysis (IIASA) for hosting and maintaining the SSP Scenario Database of the Integrated Assessment Modelling Consortium (IAMC), and thank P. Kolp for his reliable support with the administration of and access to scenario data, and administration of the database infrastructure. J.R., O.F., V.K., K.R., G.L., E.K. and A.P. have received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 642147 (CD-LINKS), no. 641816 (CRESCENDO) and the Framework Programme 7 under grant agreement no. 308329 (ADVANCE). J.S. has received funding from the Deutsche Forschungsgemeinschaft (DFG) in the SPP ED 178/3-1 (CEMICS). S.F. and T.H. are supported by JSPS KAKENHI Grant Number JP16K18177, and the Global Environmental Research Fund 2–1702 of the Ministry of Environment of Japan. J.R. acknowledges the support of the Oxford Martin Visiting Fellowship Programme.

Author information

Affiliations

  1. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

    • Joeri Rogelj
    • , Shinichiro Fujimori
    • , Tomoko Hasegawa
    • , Volker Krey
    • , Keywan Riahi
    • , Oliver Fricko
    •  & Petr Havlík
  2. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

    • Joeri Rogelj
  3. Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany

    • Alexander Popp
    • , Gunnar Luderer
    • , Jessica Strefler
    • , Elmar Kriegler
    •  & Florian Humpenöder
  4. Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA

    • Katherine V. Calvin
    •  & Jae Edmonds
  5. Fondazione Eni Enrico Mattei, Milan, Italy

    • Johannes Emmerling
    • , Giacomo Marangoni
    • , Laurent Drouet
    •  & Massimo Tavoni
  6. Centro Euro-Mediterraneo sui Cambiamenti Climatici, Milan, Italy

    • Johannes Emmerling
    • , Giacomo Marangoni
    • , Laurent Drouet
    •  & Massimo Tavoni
  7. PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands

    • David Gernaat
    • , Detlef P. van Vuuren
    • , Jonathan Doelman
    • , Mathijs Harmsen
    •  & Elke Stehfest
  8. Copernicus Institute for Sustainable Development, Utrecht University, Utrecht, The Netherlands

    • David Gernaat
    • , Detlef P. van Vuuren
    •  & Mathijs Harmsen
  9. National Institute for Environmental Studies, Tsukuba, Japan

    • Shinichiro Fujimori
    •  & Tomoko Hasegawa
  10. Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milan, Italy

    • Massimo Tavoni

Authors

  1. Search for Joeri Rogelj in:

  2. Search for Alexander Popp in:

  3. Search for Katherine V. Calvin in:

  4. Search for Gunnar Luderer in:

  5. Search for Johannes Emmerling in:

  6. Search for David Gernaat in:

  7. Search for Shinichiro Fujimori in:

  8. Search for Jessica Strefler in:

  9. Search for Tomoko Hasegawa in:

  10. Search for Giacomo Marangoni in:

  11. Search for Volker Krey in:

  12. Search for Elmar Kriegler in:

  13. Search for Keywan Riahi in:

  14. Search for Detlef P. van Vuuren in:

  15. Search for Jonathan Doelman in:

  16. Search for Laurent Drouet in:

  17. Search for Jae Edmonds in:

  18. Search for Oliver Fricko in:

  19. Search for Mathijs Harmsen in:

  20. Search for Petr Havlík in:

  21. Search for Florian Humpenöder in:

  22. Search for Elke Stehfest in:

  23. Search for Massimo Tavoni in:

Contributions

J.R. coordinated the conception and writing of the paper, performed the scenario analysis and created the figures; J.R., K.V.C., A.P., G.L., J.Em., S.F., E.K., K.R. and D.P.v.V. designed the scenarios, which were developed and contributed by all modelling teams, with notable contributions from S.F., T.H. (AIM/CGE), K.V.C., J.Ed. (GCAM), D.G., E.S., J.D., M.H., D.P.v.V. (IMAGE), O.F., P.H., V.K., J.R., K.R. (MESSAGE-GLOBIOM), J.S., F.H., A.P., G.L., E.K. (REMIND-MAgPIE) and J.Em., G.M., L.D. and M.T. (WITCH-GLOBIOM); all authors provided feedback and contributed to writing the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Joeri Rogelj.

Supplementary information

  1. Supplementary Information

    Supplementary Text 1–6, Supplementary Figures 1–26, Supplementary Tables 1–7 and Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41558-018-0091-3