Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scenarios towards limiting global mean temperature increase below 1.5 °C

Abstract

The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emission and temperature characteristics of 1.9 W m−2 scenarios under various SSPs.
Fig. 2: Overview of key decarbonization characteristics in 1.9 W m−2 scenarios.
Fig. 3: BECCS, fossil–CCS and CCS across SSPs and across climate targets.
Fig. 4: Differential mitigation characteristics when moving from a 2.6 W m−2 SSP2 scenario to a 1.9 W m−2 scenario under three SSP assumptions (SSP1, SSP2, SSP5).
Fig. 5: Variation of carbon prices over SSP and radiative forcing target space.
Fig. 6: Variation in mitigation challenges for limiting end-of-century radiative forcing to 1.9 W m−2 across the SSPs.

Similar content being viewed by others

References

  1. van Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  2. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment Design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  3. Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article  CAS  Google Scholar 

  4. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  5. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  6. O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  7. van Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

    Article  Google Scholar 

  8. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  9. van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  10. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

  11. Fujimori, S. et al. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob. Environ. Change 42, 268–283 (2017).

    Article  Google Scholar 

  12. Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article  Google Scholar 

  13. Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article  Google Scholar 

  14. Decision 1/CP.16 The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-term Cooperative Action Under the Convention (UNFCCC, 2010).

  15. Paris Agreement (UNFCCC, 2015).

  16. Emmerling, J. et al. The WITCH 2016 model — documentation and implementation of the Shared Socioeconomic Pathways. FEEM Working Paper 42.2016 (2016).

  17. O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

  18. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  19. Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Article  Google Scholar 

  20. Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  21. Kriegler, E. et al. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Climatic Change 122, 401–414 (2014).

    Article  Google Scholar 

  22. Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

    Article  Google Scholar 

  23. Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2016).

    Article  CAS  Google Scholar 

  24. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Change 6, 245–252 (2016).

    Article  Google Scholar 

  25. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  26. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  27. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5, 519–527 (2015).

  28. MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

    Article  Google Scholar 

  29. Schneider von Deimling, T. et al. Estimating the near-surface permafrost–carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

    Article  Google Scholar 

  30. Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

    Article  Google Scholar 

  31. Popp, A. et al. in Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  32. Clarke, L. et al. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6, 413–510 (IPCC, Cambridge Univ. Press, 2014).

  33. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  34. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  Google Scholar 

  35. Bauer, N. et al. Shared Socio-Economic Pathways of the energy sector — quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Article  Google Scholar 

  36. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7, 916–944 (2015).

    Article  CAS  Google Scholar 

  37. Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2016).

    Article  Google Scholar 

  38. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11, 811–922 (IPCC, Cambridge Univ. Press, 2014).

  39. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  40. Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Article  CAS  Google Scholar 

  41. Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  42. Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

    Article  Google Scholar 

  43. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  44. Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

    Article  Google Scholar 

  45. Tavoni, M. & Tol, R. Counting only the hits? The risk of underestimating the costs of stringent climate policy. Climatic Change 100, 769–778 (2010).

    Article  Google Scholar 

  46. Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Article  Google Scholar 

  47. Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133–7142 (2016).

    Article  Google Scholar 

  48. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

    Article  Google Scholar 

  49. Su, X. et al. Emission pathways to achieve 2.0 °C and 1.5 °C climate targets. Earths Future 5, 592–604 (2017).

    Article  Google Scholar 

  50. Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

    Article  CAS  Google Scholar 

  51. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Last chance for carbon capture and storage. Nat. Clim. Change 3, 105–111 2013).

    Article  CAS  Google Scholar 

  52. Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

    Article  Google Scholar 

  53. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge Univ. Press, 2014).

  54. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).

    Article  Google Scholar 

  55. Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  56. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  CAS  Google Scholar 

  57. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 — part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  58. Claudia, T., Brian, O. N. & Jean-François, L. Sensitivity of regional climate to global temperature and forcing. Environ. Res. Lett. 10, 074001 (2015).

    Article  Google Scholar 

  59. Hendriks C., Graus W. & Van Bergen F. Global Carbon Dioxide Storage Potential and Costs Report No. EEP-02001 (Ecofys, 2004).

  60. Kriegler, E. et al. Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Social. Change 90, 45–61 (2015).

    Article  Google Scholar 

  61. Decision 24/CP.19. Revision of the UNFCCC Reporting Guidelines on Annual Inventories for Parties included in Annex I to the Convention 1–54 (UNFCCC, 2013).

  62. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  63. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  64. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

    Article  Google Scholar 

  65. Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of potentially lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 031003 (2014).

    Article  Google Scholar 

  66. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–33 (Cambridge Univ. Press, 2014).

Download references

Acknowledgements

We thank the International Institute for Applied Systems Analysis (IIASA) for hosting and maintaining the SSP Scenario Database of the Integrated Assessment Modelling Consortium (IAMC), and thank P. Kolp for his reliable support with the administration of and access to scenario data, and administration of the database infrastructure. J.R., O.F., V.K., K.R., G.L., E.K. and A.P. have received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 642147 (CD-LINKS), no. 641816 (CRESCENDO) and the Framework Programme 7 under grant agreement no. 308329 (ADVANCE). J.S. has received funding from the Deutsche Forschungsgemeinschaft (DFG) in the SPP ED 178/3-1 (CEMICS). S.F. and T.H. are supported by JSPS KAKENHI Grant Number JP16K18177, and the Global Environmental Research Fund 2–1702 of the Ministry of Environment of Japan. J.R. acknowledges the support of the Oxford Martin Visiting Fellowship Programme.

Author information

Authors and Affiliations

Authors

Contributions

J.R. coordinated the conception and writing of the paper, performed the scenario analysis and created the figures; J.R., K.V.C., A.P., G.L., J.Em., S.F., E.K., K.R. and D.P.v.V. designed the scenarios, which were developed and contributed by all modelling teams, with notable contributions from S.F., T.H. (AIM/CGE), K.V.C., J.Ed. (GCAM), D.G., E.S., J.D., M.H., D.P.v.V. (IMAGE), O.F., P.H., V.K., J.R., K.R. (MESSAGE-GLOBIOM), J.S., F.H., A.P., G.L., E.K. (REMIND-MAgPIE) and J.Em., G.M., L.D. and M.T. (WITCH-GLOBIOM); all authors provided feedback and contributed to writing the paper.

Corresponding author

Correspondence to Joeri Rogelj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–6, Supplementary Figures 1–26, Supplementary Tables 1–7 and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogelj, J., Popp, A., Calvin, K.V. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Clim Change 8, 325–332 (2018). https://doi.org/10.1038/s41558-018-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0091-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing