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Photoredox-active Cr(0) luminophores 
featuring photophysical properties 
competitive with Ru(II) and Os(II) complexes

Narayan Sinha    1,2, Christina Wegeberg    1,2, Daniel Häussinger    1, 
Alessandro Prescimone    1 & Oliver S. Wenger    1 

Coordination complexes of precious metals with the d6 valence electron 
configuration such as Ru(II), Os(II) and Ir(III) are used for lighting 
applications, solar energy conversion and photocatalysis. Until now, 
d6 complexes made from abundant first-row transition metals with 
competitive photophysical and photochemical properties have been 
elusive. While previous research efforts focused mostly on Fe(II), we 
disclose that isoelectronic Cr(0) gives access to higher photoluminescence 
quantum yields and excited-state lifetimes when compared with any other 
first-row d6 metal complex reported so far. The luminescence behaviour of 
the metal-to-ligand charge transfer excited states of these Cr(0) complexes 
is competitive with Os(II) polypyridines. With these Cr(0) complexes, the 
metal-to-ligand charge transfer states of first-row d6 metal complexes 
become exploitable in photoredox catalysis, and benchmark chemical 
reductions proceed efficiently under low-energy red illumination. Here we 
demonstrate that appropriate molecular design strategies open up new 
perspectives for photophysics and photochemistry with abundant  
first-row d6 metals.

Upon photo-irradiation of a suitable metal complex, the promotion 
of an electron from the metal to a coordinated ligand can generate 
a metal-to-ligand charge transfer (MLCT) excited state with diverse 
applications in photophysics and photochemistry1. In many noble metal 
complexes, MLCT excited states luminesce and have lifetimes of several 
tens of nanoseconds or longer, which forms the basis for their use in 
lighting applications and photocatalysis2–4. Octahedral Ru(II), Os(II) and 
Ir(III) complexes with π-conjugated ligands are prototypical examples 
with a low-spin d6 configuration5,6 (Fig. 1a), in which three degenerate 
d-orbitals are all occupied with one electron pair, and two degenerate 
vacant d-orbitals are energetically above the lowest empty ligand π* 
orbital (Fig. 1d). In complexes with such an electronic structure, emis-
sive and redox-active MLCT states can then emerge.

First-row transition metals experience weaker ligand fields than 
second- and third-row transition metals7, and the lowest unoccupied 

orbitals of 3d6 complexes become metal-based (Fig. 1e), which typically 
causes ultrafast MLCT deactivation by metal-centred (MC) states8,9. 
MLCT lifetimes in Fe(II) complexes only recently reached the pico- and 
nanosecond timescale10–13, and currently only a handful of 3d6 metal 
complexes show MLCT photoluminescence in solution at 20–25 °C14–19, 
where the highest reported quantum yield is 0.09% (ref. 16). This situ-
ation is very different from the d10 electron configuration of semipre-
cious Cu(I)20, for which luminescent charge transfer excited states are 
more readily obtainable21,22, because there are no low-lying MC states 
when all d-orbitals are filled23. Owing to their privileged 3d10 electron 
configuration, Cu(I) complexes and their photophysical properties are 
therefore not directly comparable to 3d6 metal complexes. Emissive 
complexes of abundant metals with other types of excited states have 
been reported (Zr(IV) (d0) (ref. 24), Cr(III) (d3) (ref. 25) and Fe(III) (d5) 
(ref. 26)), but 3d6 analogues of the abovementioned Ru(II), Os(II) and 
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Mn(I), the MLCT luminescence and the excited-state lifetimes remained 
inferior to noble metal compounds16,18. Two complementary molecular 
design principles now yield the first 3d6 complexes (Fig. 1c) with pho-
tophysical and photochemical behaviour competitive with precious 
metal-based analogues. The electronic structures of these Cr(0) com-
plexes (Fig. 1f) resemble those of well-known noble metal analogues 
(Fig. 1g,i), more than those of Fe(II) polypyridines (Fig. 1h).

The new complexes [Cr(LMes)3] and [Cr(LPyr)3] were obtained in 
78% and 47% yields, respectively, by reacting the previously unknown 
ligands LMes and LPyr with CrCl3(THF)3 in the presence of Na/Hg in dry and 
de-aerated tetrahydrofuran (THF) at room temperature. Nuclear mag-
netic resonance (NMR) spectroscopy, mass spectrometry, combustion 
analysis and infra-red spectroscopy establish the identity and purity 
of the complexes. The key characteristics of isocyanide complexes 
including the 13C NMR resonances of the coordinating carbon atoms, as 
well as C≡N stretches in infra-red spectroscopy, are readily detectable 

Ir(III) complexes with competitive photophysical and photochemical 
properties have been unknown27,28.

In this Article, we report two Cr(0) complexes with MLCT 
excited-state lifetimes close to 50 ns and photoluminescence quan-
tum yields competitive with benchmark Os(II) polypyridines. These 
photophysical properties permit MLCT-based photoredox catalysis 
analogous to that known from many precious d6 metal complexes.

Results and discussion
Molecular design, synthesis and characterization
Non-radiative MLCT deactivation in d6 complexes decelerates in strong 
ligand fields, because the MC states are shifted to higher energies29. 
Isocyanide ligands create strong ligand fields30, which provide W(0) 
complexes with promising photophysics and photochemistry31,32. We 
developed isocyanide chelate ligands that provided brightly emissive 
Mo(0) complexes33, but with the first-row transition metals Cr(0) and 
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Fig. 1 | d6 metal complexes, their valence electron configurations and key 
electronic states. a–c, Molecular structures of [Os(bpy)3]2+ (a), [Fe(bpy)3]2+ (bpy, 
2,2′-bipyridine) (b) and the new [Cr(LMes)3] and [Cr(LPyr)3] complexes (c). d–f, The 
low-spin d6 electron configurations in Oh point symmetry include a π* ligand 
orbital, which is the lowest unoccupied molecular orbital (LUMO) in [Os(bpy)3]2+ 
(d) but not in [Fe(bpy)3]2+ (e). For [Cr(LMes)3] and [Cr(LPyr)3], the situation is 

analogous to [Os(bpy)3]2+ (f). g–i, Potential-well energy diagrams of [Os(bpy)3]2+ 
(g), [Fe(bpy)3]2+ (h), and the previously explored [Cr(LtBu)3] reference complex15, 
as well as the two new Cr(0) complexes (i). In [Cr(LMes)3] and [Cr(LPyr)3], the MLCT 
excited-state distortion (ΔQe) is smaller than in [Cr(LtBu)3], owing to cooperative 
rigidity and a π-electron density delocalization effect.
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(Supplementary Figs. 15, 31, 72 and 81). In the X-ray crystal structure of 
[Cr(LMes)3] (Fig. 2a), the six mesityl substituents ortho to the isocyanide 
groups wedge in between the m-terphenyl ligand backbones, and thus 
impart cooperative rigidity to the overall complex while simultane-
ously protecting the Cr(0) atom. The absence of EXSY peaks between 
the two ortho methyl groups of the mesityl in the NOESY and ROESY 
NMR spectra (Supplementary Figs. 18 and 19) as well as the distinctly 
different NOE patterns (Supplementary Fig. 18) for the methyl pointing 
towards the chromium, compared with the outward-oriented methyl 
group, clearly demonstrate that this rigidity is also maintained in solu-
tion. Solid [Cr(LMes)3] and [Cr(LPyr)3] can be stored under air for several 
weeks without undergoing noticeable degradation, and an initially 
de-aerated solution of [Cr(LMes)3] showed only 3% of decomposition 
over 15 days of exposure to air (Supplementary Fig. 33). The single crys-
tal used for X-ray diffraction was grown in an NMR tube that was open 
to air. Both complexes remained intact for several days in de-aerated 
toluene-d8 at 115 °C (Supplementary Figs. 32 and 88). A single set of 
sharp 1H NMR resonances indicates that the three ligands in [Cr(LMes)3] 
are symmetry related at 298 K, whereas for [Cr(LPyr)3] analogous behav-
iour is only observed at 378 K, due to hindered rotation of the tert-butyl 
groups at lower temperatures (Supplementary Fig. 75). Thus, while the 
pyrene substituents on the backbone of LPyr rotate freely above 318 K as 
shown by variable temperature NMR (Supplementary Fig. 76) and NOE 
contacts between the terphenyl protons to both sides of the pyrene 

substituent at 378 K (Supplementary Fig. 84), the coalescence pattern 
of the tert-butyl resonances suggests that the structural rigidity of 
[Cr(LPyr)3] and the steric protection of the metal centre are mainly due 
to inter-ligand contacts caused by the tert-butyl groups.

Electrochemistry and photophysics
Oxidation of Cr(0) to Cr(I) occurs reversibly near −0.7 V versus Fc+/Fc  
in both complexes (Fig. 2b), and, along with oxidation of Cr(I) to  
Cr(II) at higher potentials, is typical for hexakis(arylisocyanide) com-
plexes of Cr(0) (ref. 34). A reversible wave at −2.50 V versus Fc+/Fc  
observed for [Cr(LPyr)3] is attributable to reduction of the pyrene 
substituents, whereas reduction of the m-terphenyl backbones of 
the diisocyanide ligands is outside the electrochemical window of 
suitable electrolytes15,17.

The free LMes and LPyr ligands absorb only ultraviolet light, but 
[Cr(LMes)3] and [Cr(LPyr)3] feature MLCT bands covering large parts of the 
visible absorption spectrum (Fig. 3a,b). The increased π-conjugation 
network of the pyrene-decorated ligand causes a 100 nm red shift of 
the MLCT absorption band maximum of [Cr(LPyr)3] compared with 
[Cr(LMes)3]. Upon photo-excitation, both complexes show broad and 
unstructured luminescence. Between cyclohexane and THF, the lumi-
nescence band maxima shift from 695 nm to 745 nm in [Cr(LMes)3] and 
from 713 nm to 840 nm in [Cr(LPyr)3], because the emissive MLCT state 
is energetically more stabilized in high polarity solvents35. Thus, the 
luminescence of the two Cr(0) complexes occurs in the same spectral 
range as the MLCT emission of [Os(bpy)3]2+ (Table 1). Differences in 
solubility between the charge-neutral Cr(0) compounds and the dica-
tionic Os(II) complex preclude direct comparison in the same solvent, 
yet the energies of the emissive MLCT excited states of [Cr(LMes)3] and 
[Cr(LPyr)3] in cyclohexane and of [Os(bpy)3]2+ in acetonitrile are evi-
dently similar. The comparison of photophysical properties between 
these three compounds is therefore more meaningful than comparison 
with [Ru(bpy)3]2+.

Transient absorption and time-resolved luminescence experi-
ments yield single-exponential MLCT decays for both Cr(0) complexes 
in de-aerated THF, toluene and cyclohexane at 20 °C (Fig. 3a–d and 
Supplementary Tables 6 and 10). The observable trend in decay kinetics 
follows the energy gap law35, leading to the longest MLCT lifetimes (τ) 
in the most apolar solvent, 31 ns for [Cr(LMes)3] and 47 ns for [Cr(LPyr)3] 
in cyclohexane at 20 °C. The photoluminescence quantum yields (ϕ) 
under these conditions are 0.36 ± 0.02% for [Cr(LMes)3] and 1.04 ± 0.05% 
for [Cr(LPyr)3] (Table 1). For [Os(bpy)3]2+ in de-aerated acetonitrile, τ is 
60 ns and ϕ is 0.46%35; hence, the Cr(0) complexes exhibit competitive 
photophysical properties. The even longer MLCT lifetime and greater 
luminescence quantum yield of [Ru(bpy)3]2+ are largely due to its 0.3 eV 
higher MLCT energy, which further limits non-radiative relaxation fol-
lowing the energy gap law35.

The MLCT lifetimes and luminescence quantum yields of [Cr(LMes)3] 
and [Cr(LPyr)3] exceed those of previously reported 3d6 complexes by 
at least an order of magnitude8–16,19,27. Aside from the rigid interlocked 
molecular structures discussed above, the extended π-conjugation 
network of the new diisocyanide ligands contributes to this behaviour. 
In the ultraviolet (UV)–visible (Vis) transient absorption spectrum of 
[Cr(LPyr)3] (Fig. 3d), the negative signal around 340 nm coincides with 
the lowest pyrene-localized 1π–π* transition in the ground state, indi-
cating that the photoactive MLCT state has admixed pyrene character. 
Thus, the excited electron of the emissive MLCT state appears to be 
strongly delocalized, in line with the strong emission solvatochromism. 
Such delocalization causes weaker distortion of the MLCT excited state 
relative to the ground state (ΔQe in Fig. 1i)36, making non-radiative relax-
ation less dominant, somewhat reminiscent of the even much more 
weakly distorted spin-flip excited states of Cr(III) (d3) compounds25,27,37. 
Compared with these spin-flip MC states of d3 complexes, long-lived 
and strongly emissive MLCT excited states in first-row d6 complexes 
are far more difficult to obtain38.
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Fig. 3 | Photophysical characterization of Cr(0) tris(diisocyanide) complexes. 
a, UV–Vis absorption spectra (solid traces) of uncoordinated LMes ligand in THF 
(black) and of [Cr(LMes)3] in THF, toluene and cyclohexane. Photoluminescence 
spectra (λexc = 500 nm, dotted traces) of [Cr(LMes)3] in the same solvents. 
Inset: luminescence decay kinetics (λexc = 473 nm) of [Cr(LMes)3]. b, UV–Vis 
absorption spectra (solid traces) of uncoordinated LPyr ligand in toluene 
(black) and of [Cr(LPyr)3] in THF, toluene and cyclohexane. Photoluminescence 
spectra (λexc = 550 nm, dotted traces) of [Cr(LPyr)3] in the same solvents. Inset: 
luminescence decay kinetics (λexc = 473 nm) of [Cr(LPyr)3]. c, Transient absorption 
spectrum of [Cr(LMes)3] in cyclohexane, time integrated over 200 ns after 
excitation at 500 nm. Inset: kinetics of excited-state absorption (ESA) decay 

at 375 nm and ground-state bleach (GSB) recovery at 460 nm of [Cr(LMes)3] in 
cyclohexane. d, Transient absorption spectrum of [Cr(LPyr)3] in cyclohexane, time 
integrated over 50 ns after excitation at 550 nm. Inset: ESA (374 nm) and GSB 
(570 nm) kinetics of [Cr(LPyr)3] in cyclohexane. e, Arrhenius plots of experimental 
MLCT excited-state decay rate constants (kobs) for [Cr(LPyr)3] in cyclohexane and 
toluene providing estimates of the activation energy (Ea) for relaxation of the 
3MLCT state via non-radiative decay into MC states. f, Delayed fluorescence of 
1*perylene detected after excitation of [Cr(LPyr)3] (10 μM) at 635 nm in de-aerated 
toluene at 20 °C. I/I0 is the luminescence intensity as a function of time versus the 
initial luminescence intensity at time = 0. mΔOD represents a change in optical 
density. T is the temperature.

Table 1 | Photophysical parameters of the new Cr(0) complexes and a few benchmark d6 complexes

Complex Solventh λabs, max (MLCT) (nm) λem, max (MLCT) (nm) *Eox (V versus Fc+/0) τ (ns) ϕ (%)

[Cr(LMes)3]a Cyclohexane 451 695 −2.7 31 0.36 ± 0.017

[Cr(LPyr)3]a Cyclohexane 546 713 −2.6 47 1.04 ± 0.05

[Cr(LtBu)3]b THF 480 630 −2.4 2.2 0.001

[Mn(Ltri)2]c Acetonitrile 395 525 −2.3 1.7 0.03

[Fe(pqa)2]d Toluene 730 Non-emissive – 2.7i –

[Fe(bpy)3]2+e Acetonitrile 521 Non-emissive – 5 × 10−5 –

[Os(bpy)3]2+f Acetonitrile 640 723 −1.4 60 0.46

[Ru(bpy)3]2+g Acetonitrile 452 620 −1.1 855 6.20
aThis work. bFrom ref. 15. cFrom ref. 18. dFrom ref. 11 (pqa, (phenanthridin-4-yl)(quinoline-8-yl)amido). eFrom ref. 39. fFrom ref. 35. gFrom ref. 53. hDry and de-aerated at 20 °C. iThe lowest excited 
state is not a classical MLCT state in this case.
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In isoelectronic Fe(II) complexes, internal conversion from the 
lowest MLCT to MC states (Fig. 1h) commonly represents the domi-
nant non-radiative relaxation pathway7–13,27,29, and in some cases, this 
is essentially barrierless39. Temperature-dependent studies suggest 
that in [Cr(LPyr)3] the activation barrier for internal conversion to an MC 
state is 24 kJ mol−1 in cyclohexane and 15 kJ mol−1 in toluene (Fig. 3e). 
Consequently, the higher luminescence quantum yield in cyclohexane 
is probably the combined result of decelerated non-radiative MLCT 
relaxation directly to the ground state and slowed internal conversion 
to MC states; analogous results are obtained for [Cr(LMes)3] (Supple-
mentary Figs. 41 and 42).

Triplet energy transfer, upconversion, photoredox catalysis
Based on the absorption and emission data (Fig. 3a,b), the MLCT energies 
of [Cr(LMes)3] and [Cr(LPyr)3] are 1.98 eV and 1.90 eV, respectively. Triplet–
triplet energy transfer to perylene (Supplementary Figs. 98 and 99)  

occurs with essentially diffusion-limited kinetics (9.2 × 109 M−1 s−1), 
indicating that both Cr(0) compounds are amenable to triplet–triplet 
energy transfer catalysis40. Delayed perylene fluorescence at 480 nm 
is detectable upon selective excitation of [Cr(LPyr)3] at 635 nm (Fig. 3f), 
illustrating that the Cr(0) complexes can sensitize triplet–triplet anni-
hilation upconversion41,42. Given the abovementioned MLCT energies 
and the ease of Cr(0) to Cr(I) oxidation, [Cr(LMes)3] and [Cr(LPyr)3] become 
strong excited-state reductants with potentials near −2.7 V versus Fc+/Fc 
(Fig. 2b inset)43. W(0) arylisocyanides have a similar reducing power32,44, 
but common precious metal-based d6 complexes are far weaker 
photo-reductants1,4,45 (Table 1). Different aryl halides (Fig. 4) reduc-
tively quench the MLCT state of [Cr(LMes)3]. For example, 4-iodoanisole 
reacts with a rate constant of 1.9 × 107 M−1 s−1 in de-aerated toluene at 
20 °C, in addition to showing some static quenching (Supplementary 
Figs. 104 and 105). Catalytic photoreductions of aryl halides become 
possible in the presence of tetrakis(dimethylamino)ethylene (TDAE), a 
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Benzene-d6,
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Fig. 4 | Photoredox catalysis using [Cr(LMes)3] as a red-light absorbing 
sensitizer for benchmark reductive dehalogenation reactions. a, Proposed 
catalytic cycle in which the reductive dehalogenation reaction occurs directly 
from the 3MLCT excited state, and the Cr(0) resting state is subsequently 
regenerated by TDAE. b, Control experiments. aReaction conditions: aryl halide 
(0.06 mmol), [Cr(LMes)3] (1 mol%), TDAE (1.5 equiv), benzene-d6 (0.6 mL), 623 nm 
LED (3.8 W) and room temperature. bNMR yields obtained by using 1,4-dioxane as 

an internal standard. c, Substrate scope using the conditions listed in b. c3 mol% 
[Cr(LMes)3]. d, Overall redox-neutral, intramolecular base-promoted homolytic 
aromatic substitution (BHAS) reaction between iodobenzene and N-alkylated 
pyrrole using [Cr(LMes)3] as a photocatalyst, along with a plausible mechanism 
for the formation of the C–C coupling product33,44. NMR yield obtained by using 
1,4-dioxane as an internal standard.
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commercial reductant capable of regenerating Cr(I) to Cr(0) after initial 
photo-induced electron transfer to the individual substrates (Fig. 4a).  
Similar hydrodehalogenation reactions with organic or precious 
metal-based photocatalysts typically require up to two blue or green 
photons per turnover45–47, whereas [Cr(LMes)3] drives the reactions with 
red light, keeping photodegradation at an acceptable level (Supplemen-
tary Fig. 100). Photocatalysis with isoelectronic Fe(II) complexes usually 
occurs from MC states48,49, and there is only one single report involving 
a dark (non-luminescent) MLCT state, which, however, relies on con-
secutive ligand-to-metal charge transfer (LMCT) and MLCT excitation 
of an Fe(III)/Fe(II) system50. Aryl iodides, bromides and even an activated 
chloride with reduction potentials between −2.4 V and −2.7 V versus Fc+/
Fc are reductively dehalogenated by MLCT-excited [Cr(LMes)3] (Fig. 4c), 
providing the proof of concept for demanding photoreductions under 
red illumination that are not accomplishable in the same fashion with 
typical noble metal-based d6 complexes (Fig. 4b)4,45,46.

TDAE is a commercial reductant, but it is more expensive than 
other commonly used tertiary amine donors; hence, it seemed inter-
esting to explore overall redox-neutral base-promoted homolytic 
aromatic substitution (BHAS) reactions, for which no electron donor 
at all needs to be added33,44. We chose 1-(2-iodobenzyl)-pyrrole as a sub-
strate enabling an intramolecular variant of the BHAS reaction. Using 
[Cr(LMes)3] as a photosensitizer, TMP (2,2,6,6-tetramethylpiperidine) 
as a base, and red light (Fig. 4d), the anticipated C–C coupled product 
formed in 38% yield at a catalyst loading of 10 mol%. The lower yield 
of the BHAS reaction and the need for higher catalyst loadings with 
respect to the hydrodehalogenations in Fig. 4c could have several 
reasons, including the following. First, the driving force for the reduc-
tive dehalogenation step in this specific substrate is only roughly 
0.04 V. Second, the driving force for the regeneration of Cr(I) to Cr(0) 
in the catalytic cycle by the tricylic radical (Fig. 4d) is not known, but 
is probably in competition with nucleophilic attack of iodide anions at 
Cr(I), thereby leading to degradation of the sensitizer33. Nonetheless, 
the BHAS reaction in Fig. 4d provides an important proof of concept 
for overall redox-neutral reactions involving a thermodynamically 
demanding reduction step. [Ru(bpy)3]2+, [Ir(ppy)3] and the vast major-
ity of their precious metal-based congeners are unable to catalyse 
comparable BHAS reactions43, because they lack sufficient reducing 
power in their MLCT excited states. After thousands of publications 
exploiting the MLCT excited states of precious 4d6 and 5d6 metal com-
plexes for photoredox catalysis, the hydrodehalogenation and BHAS 
reactions demonstrated herein represent the first examples in which a 
luminescent MLCT excited state of a 3d6 metal complex has been used 
for photoredox catalysis.

After decades of research targeting 3d6 complexes emitting from 
the same type of MLCT excited state with competitive photophysical 
properties as hundreds of precious 4d6 and 5d6 metal complexes, only 
one single Fe(II) complex has been reported to emit from a 3MLCT 
excited state. This Fe(II) complex has an MLCT lifetime of 1 ns and a 
luminescence quantum yield close to the detection limit19. Two Mn(I) 
complexes exhibited 3MLCT lifetimes around 1 ns and luminescence 
quantum yields below 0.1% (refs. 18,38), and two Cr(0) complexes had 
slightly longer 3MLCT lifetimes (2–6 ns) and equally modest lumines-
cence quantum yields (0.001–0.09%)15,16. Evidently, these previously 
reported MLCT-based 3d6 luminophores possess very short MLCT 
lifetimes and poor luminescence quantum yields. With the Cr(0) com-
plexes reported herein, the MLCT phosphorescence lifetimes and 
quantum yields of 3d6 complexes finally become competitive with 4d6 
or 5d6 compounds based on precious metals, and photocatalysis based 
on luminescent MLCT excited states is now possible using first-row d6 
metal complexes. These findings complement recent key advances 
with LMCT excited states in complexes based on other abundant transi-
tion metals, in particular 3d5 Fe(III) LMCT luminophores with fluores-
cence lifetimes up to 2.0 ns and quantum yields up to 2.0% (refs. 26,51),  
in which the direction of charge transfer is opposite. Access to both 

LMCT and MLCT excited states with mutually complementary charge 
transfer directionalities is important to target the complete spectrum 
of photophysical and photochemical applications of first-row transi-
tion metal complexes52.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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