Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A platinum(ii) metallonitrene with a triplet ground state

A Publisher Correction to this article was published on 16 December 2020

This article has been updated

Abstract

Metallonitrenes (M–N) are complexes with a subvalent atomic nitrogen ligand that have been proposed as key reactive intermediates in nitrogen atom transfer reactions. However, in contrast to the common classes of nitride complexes (M≡N) and organic nitrenes (R–N), structurally and spectroscopically well defined ‘authentic’ metallonitrenes with a monovalent atomic nitrogen ligand remain elusive. Here we report that the photolysis of a platinum(ii) pincer azide complex enabled the crystallographic, spectroscopic, magnetic and computational characterization of a metallonitrene that is best described as a singly bonded atomic nitrogen diradical ligand bound to platinum(ii). The photoproduct exhibits selective C–H, B–H and B–C nitrogen atom insertion reactivity. Despite the subvalent metallonitrene character, mechanistic analysis for aldehyde C–H amidation shows nucleophilic reactivity of the N-diradical ligand. Ambiphilic reactivity of the metallonitrene is indicated by reactions with CO and PMe3 to form isocyanate and phosphoraneiminato platinum(ii) complexes, respectively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lewis structures and C–H nitrogen insertion reactivity of coordinated nitrogen ligands.
Fig. 2: Synthesis, crystallographic and magnetic characterization of platinum(ii) metallonitrene 2.
Fig. 3: Characteristic NLMOs resulting from an NBO analysis support the platinum(ii) metallonitrene description of complex 2.
Fig. 4: Nitrogen centred reactivity of metallonitrene 2.
Fig. 5: Computational examination of the reaction of metallonitrene 2 with benzaldehyde.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this Article and its Supplementary Information or are available from the corresponding author upon reasonable request. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1973273 ([PtCl(N(CH2CH2PtBu2)2)] (A)), 1973274 ([PtCl(PNP)] (B)), 1973275 ([PtH(PNP)] (C)), 1973276 ([PtOTf(PNP)] (D)), 1973277 (1), 1973278 (2), 1973279 (3), 1994705 (5), 1973280 (6), 1973281 (7), 1973282 (8), 1973283 (9). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Change history

References

  1. Falvey, D. E. & Gudmundsdottir, A. D. Nitrenes and Nitrenium Ions (John Wiley & Sons, 2013).

  2. Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    CAS  Google Scholar 

  3. Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).

    CAS  Google Scholar 

  4. Suarez, A. I. O., Lyaskovskyy, V., Reek, J. N. H., van der Vlugt, J. I. & de Bruin, B. Complexes with nitrogen-centered radical ligands: classification, spectroscopic features, reactivity, and catalytic applications. Angew. Chem. Int. Ed. 52, 12510–12529 (2013).

    CAS  Google Scholar 

  5. Hojilla Atienza, C. C., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Photolysis and thermolysis of Bis(imino)pyridine cobalt azides: C−H activation from putative cobalt nitrido complexes. J. Am. Chem. Soc. 132, 16343–16345 (2010).

    CAS  PubMed  Google Scholar 

  6. Thomson, R. K. et al. Uranium azide photolysis results in C–H bond activation and provides evidence for a terminal uranium nitride. Nat. Chem. 2, 723–729 (2010).

    CAS  PubMed  Google Scholar 

  7. King, D. M. et al. Isolation and characterization of a uranium(VI)–nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    CAS  PubMed  Google Scholar 

  8. Schöffel, J., Šušnjar, N., Nückel, S., Sieh, D. & Burger, P. 4d vs. 5d – Reactivity and Fate of Terminal Nitrido Complexes of Rhodium and Iridium. Eur. J. Inorg. Chem. 2010, 4911–4915 (2010).

    Google Scholar 

  9. Vreeken, V. et al. C-H activation of benzene by a photoactivated NiII(azide): Formation of a transient nickel nitrido complex. Angew. Chem. Int. Ed. 54, 7055–7059 (2015).

    CAS  Google Scholar 

  10. Henning, H., Hofbauer, K., Handke, K. & Stich, R. Unusual reaction pathways in the photolysis of diazido(phosphane)nickel(ii) complexes: nitrenes as intermediates in the formation of nickel(0) complexes. Angew. Chem. Int. Ed. Engl. 36, 408–410 (1997).

    Google Scholar 

  11. Ronconi, L. & Sadler, P. J. Unprecedented carbon–carbon bond formation induced by photoactivation of a platinum(iv)-diazido complex. Chem. Commun. 235–237 (2008).

  12. Yao, C., Wang, X. & Huang, K.-W. Nitrogen atom transfer mediated by a new PN3P-pincer nickel core via a putative nitrido nickel intermediate. Chem. Commun. 54, 3940–3943 (2018).

    CAS  Google Scholar 

  13. Ghannam, J. et al. Intramolecular C–H functionalization followed by a [2σ + 2π] addition via an intermediate nickel–nitridyl Complex. Inorg. Chem. 58, 7131–7135 (2019).

    CAS  PubMed  Google Scholar 

  14. Sun, Z., Hull, O. A. & Cundari, T. R. Computational study of methane C–H activation by diiminopyridine nitride/nitridyl complexes of 3d transition metals and main-group elements. Inorg. Chem. 57, 6807–6815 (2018).

    CAS  PubMed  Google Scholar 

  15. Man, W.-L., Lam, W. W. Y., Kwong, H.-K., Yiu, S.-M. & Lau, T.-C. Ligand-accelerated activation of strong C–H bonds of alkanes by a (Salen)ruthenium(VI)–nitrido complex. Angew. Chem. Int. Ed. 51, 9101–9104 (2012).

    CAS  Google Scholar 

  16. Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom–transfer agent. Science 337, 1526–1528 (2012).

    CAS  PubMed  Google Scholar 

  17. Kuijpers, P. F., van der Vlugt, J. I., Schneider, S. & de Bruin, B. Nitrene radical intermediates in catalytic synthesis. Chem. Eur. J. 23, 13819–13829 (2017).

    CAS  PubMed  Google Scholar 

  18. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    CAS  PubMed  Google Scholar 

  20. Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    CAS  PubMed  Google Scholar 

  21. Zhao, Y. et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3, 2472–2484 (2019).

    CAS  Google Scholar 

  22. Siu, T. & Yudin, A. K. Practical olefin aziridination with a broad substrate scope. J. Am. Chem. Soc. 124, 530–531 (2002).

    CAS  PubMed  Google Scholar 

  23. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Iluc, V. M. et al. Synthesis and characterization of three-coordinate Ni(III)-imide complexes. J. Am. Chem. Soc. 133, 13055–13063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lyaskovskyy, V. et al. Mechanism of cobalt(II) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)–nitrene intermediates. J. Am. Chem. Soc. 133, 12264–12273 (2011).

    CAS  PubMed  Google Scholar 

  26. Goswami, M. et al. Characterization of porphyrin-Co(III)-‘nitrene radical’ species relevant in catalytic nitrenetransfer reactions. J. Am. Chem. Soc. 137, 5468–5479 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Laskowski, C. A., Miller, A. J. M., Hillhouse, G. L. & Cundari, T. R. A. Two-coordinate nickel imido complex that effects C-H amination. J. Am. Chem. Soc. 133, 771–773 (2011).

    CAS  PubMed  Google Scholar 

  28. Grünwald, A. et al. An isolable terminal imido complex of palladium and catalytic implications. Angew. Chem. Int. Ed. 57, 16228–16232 (2018).

    Google Scholar 

  29. Schöffel, J., Rogachev, A. Y., DeBeer George, S. & Burger, P. Isolation and hydrogenation of a complex with a terminal iridium–nitrido bond. Angew. Chem. Int. Ed. 48, 4734–4738 (2009).

    Google Scholar 

  30. Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nat. Chem. 4, 552–558 (2012).

    CAS  PubMed  Google Scholar 

  31. Zolnhofer, E. M. et al. An intermediate cobalt(IV) nitrido complex and its N-migratory insertion product. J. Am. Chem. Soc. 136, 15072–15078 (2014).

    CAS  PubMed  Google Scholar 

  32. Cole, J. M. Single-crystal X-ray diffraction studies of photo-induced molecular species. Chem. Soc. Rev. 33, 501–513 (2004).

    CAS  PubMed  Google Scholar 

  33. Das, A., Reibenspies, J. H., Chen, Y.-S. & Powers, D. C. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 139, 2912–2915 (2017).

    CAS  PubMed  Google Scholar 

  34. Das, A., Chen, Y.-S., Reibenspies, J. H. & Powers, D. C. Characterization of a reactive Rh2 nitrenoid by crystalline matrix isolation. J. Am. Chem. Soc. 141, 16232–16236 (2019).

    CAS  PubMed  Google Scholar 

  35. Cook, A. W. et al. Synthesis and characterization of a linear, two-coordinate Pt(II) ketimide complex. Inorg. Chem. 58, 15927–15935 (2019).

    CAS  PubMed  Google Scholar 

  36. Poverenov, E. et al. Evidence for a terminal Pt(IV)-oxo complex exhibiting diverse reactivity. Nature 455, 1093–1096 (2008).

    CAS  Google Scholar 

  37. Efremenko, I., Poverenov, E., Martin, J. M. L. & Milstein, D. DFT Study of the structure and reactivity of the terminal Pt(iv)-oxo complex bearing no electron-withdrawing ligands. J. Am. Chem. Soc. 132, 14886–14900 (2010).

    CAS  PubMed  Google Scholar 

  38. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    PubMed  Google Scholar 

  39. Kinauer, M. et al. An iridium(iii/iv/v) redox series featuring a terminal imido complex with triplet ground state. Chem. Sci. 9, 4325–4332 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Delony, D. et al. A terminal iridium oxo complex with a triplet ground state. Angew. Chem. Int. Ed. 58, 10971–10974 (2019).

    CAS  Google Scholar 

  41. Singh, S. K., Eng, J., Atanasov, M. & Neese, F. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev. 344, 2–25 (2017).

    CAS  Google Scholar 

  42. Yarkony, D. R., Schaefer, H. F. & Rothenberg, S. X 3A2, a 1E, and b 1A1 electronic states of methylnitrene. J. Am. Chem. Soc. 96, 5974–5977 (1974).

    CAS  Google Scholar 

  43. Borden, W. T. et al. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res. 33, 765–771 (2000).

    CAS  PubMed  Google Scholar 

  44. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Google Scholar 

  45. Oyeyemi, V. B., Keith, J. A. & Carter, E. A. Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory. J. Phys. Chem. A 118, 3039–3050 (2014).

    CAS  PubMed  Google Scholar 

  46. Tekarli, S. M., Williams, T. G. & Cundari, T. R. Activation of carbon−hydrogen and hydrogen−hydrogen bonds by copper−nitrenes: a comparison of density functional theory with single- and multireference correlation consistent composite approaches. J. Chem. Theory Comput. 5, 2959–2966 (2009).

    CAS  PubMed  Google Scholar 

  47. Cundari, T. R., Dinescu, A. & Kazi, A. B. Bonding and structure of copper nitrenes. Inorg. Chem. 47, 10067–10072 (2008).

    CAS  PubMed  Google Scholar 

  48. Schröder, D., Shaik, S. & Schwarz, H. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000).

    PubMed  Google Scholar 

  49. Harvey, J. N. Spin-forbidden reactions: computational insight into mechanisms and kinetics. WIREs Comput. Mol. Sci. 4, 1–14 (2014).

    CAS  Google Scholar 

  50. Gritsan, N. P. & Platz, M. S. Kinetics, spectroscopy, and computational chemistry of arylnitrenes. Chem. Rev. 106, 3844–3867 (2006).

    CAS  PubMed  Google Scholar 

  51. Saouma, C. T. & Mayer, J. M. Do spin states and spin density affect hydrogen atom transfer reactivity? Chem. Sci. 5, 21–31 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the ERC (Grant Agreement 646747) and the German Research Council (DFG grants 389479699/RTG2455, SCHN950/6-1 and SL104/10) for funding. J. M. Matys is acknowledged for help with synthetic work and single-crystal growth of (Pt(OTf)(PNP)). C.W. thanks R. Herbst-Irmer for helpful discussions. Quantum chemical calculations of the Frankfurt group were performed at the Center for Scientific Computing (CSC) Frankfurt on the Goethe-HLR computer cluster.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and M.C.H. generated the project and designed its concept. S.S. supervised the experimental study and M.C.H the quantum chemical study. J.S performed synthetic and spectroscopic work. J.A. carried out spectroscopic and crystallographic work. C.W. performed crystallographic characterization. B.d.B., M.D. and H.V. carried out quantum chemical calculations. D.H. carried out the magnetic characterization supervised by J.v.S. All authors discussed the results in detail and commented on the manuscript.

Corresponding authors

Correspondence to Max C. Holthausen or Sven Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details and spectroscopic data, Supplementary Figs. 1–100 and Tables 1–43.

Supplementary Data 1

Computational details.

Supplementary Data 1

Crystal data for complex A.

Supplementary Data 2

Crystal data for complex B.

Supplementary Data 3

Crystal data for complex C.

Supplementary Data 4

Crystal data for complex D.

Supplementary Data 5

Crystal data for complex 1.

Supplementary Data 6

Crystal data for complex 2.

Supplementary Data 7

Crystal data for complex 3.

Supplementary Data 8

Crystal data for complex 5.

Supplementary Data 9

Crystal data for complex 6.

Supplementary Data 10

Crystal data for complex 7.

Supplementary Data 11

Crystal data for complex 8.

Supplementary Data 12

Crystal data for complex 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Abbenseth, J., Verplancke, H. et al. A platinum(ii) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020). https://doi.org/10.1038/s41557-020-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0522-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing