

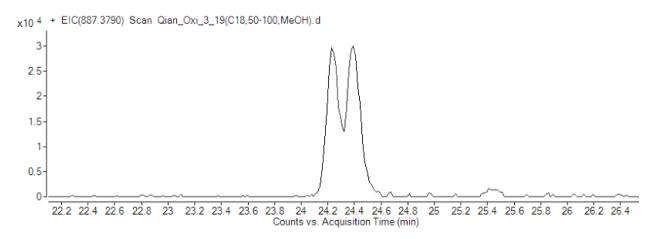
Author Correction: Dopant-induced electron localization drives CO_2 reduction to C_2 hydrocarbons

Yansong Zhou, Fanglin Che, Min Liu, Chengqin Zou, Zhiqin Liang, Phil De Luna, Haifeng Yuan, Jun Li, Zhiqiang Wang, Haipeng Xie, Hongmei Li, Peining Chen, Eva Bladt, Rafael Quintero-Bermudez, Tsun-Kong Sham, Sara Bals, Johan Hofkens, David Sinton, Gang Chen, and Edward H. Sargent

Correction to: Nature Chemistry https://doi.org/10.1038/s41557-018-0092-x, published online 16 July 2018.

In the version of this Article originally published, in Table 1, the H_2 Faradaic efficiency for Cu(C) incorrectly read 66.4%; it should have been $36 \pm 2\%$. This has now been corrected.

Published online: 29 October 2019 https://doi.org/10.1038/s41557-019-0381-z


© The Author(s), under exclusive license to Springer Nature Limited 2019

Addendum: Synthesis and reactivity of precolibactin 886

Alan R. Healy, Kevin M. Wernke, Chung Sub Kim, Nicholas R. Lees, Jason M. Crawford, and Seth B. Herzon

Addendum to: Nature Chemistry https://doi.org/10.1038/s41557-019-0338-2, published online 23 September 2019.

On reinspection of the analytical data published in their manuscript, the authors have determined that synthetic precolibactin 886 is produced as a 1:1 mixture of diastereomers (shown in Supplementary Figure 9, which has been added to the Supplementary Information file). The original 1:1.9 ratio of diastereomers reported in the manuscript reflects inadvertent enrichment of the sample following semi-preparative HPLC purification. The authors also found that natural precolibactin 886 is formed as a 1:1 mixture of diastereomers. See Supplementary Figure 5a in Li, Z.-R. et al. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. *Nat. Chem.* 11, 880–889 (2019).

Supplementary Fig. 9 | Analytical mass-selected LC/HRMS chromatogram of synthetic precolibactin 886 (1) prior to purification.

Published online: 12 November 2019 https://doi.org/10.1038/s41557-019-0383-x

© Springer Nature Limited 2019