Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequencing abasic sites in DNA at single-nucleotide resolution

Abstract

In DNA, the loss of a nucleobase by hydrolysis generates an abasic site. Formed as a result of DNA damage, as well as a key intermediate during the base excision repair pathway, abasic sites are frequent DNA lesions that can lead to mutations and strand breaks. Here we present snAP-seq, a chemical approach that selectively exploits the reactive aldehyde moiety at abasic sites to reveal their location within DNA at single-nucleotide resolution. Importantly, the approach resolves abasic sites from other aldehyde functionalities known to exist in genomic DNA. snAP-seq was validated on synthetic DNA and then applied to two separate genomes. We studied the distribution of thymine modifications in the Leishmania major genome by enzymatically converting these modifications into abasic sites followed by abasic site mapping. We also applied snAP-seq directly to HeLa DNA to provide a map of endogenous abasic sites in the human genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical tagging of DNA AP sites.
Fig. 2: Outline of snAP-seq and analysis of synthetic DNA spike-ins.
Fig. 3: Representative genome browser view of sites called by SMUG1–snAP-seq in the L. major genome.
Fig. 4: SMUG1–snAP-seq sites in the L. major genome.
Fig. 5: Analysis of SMUG1–snAP-seq sites in the L. major genome.
Fig. 6: Mapping of AP sites in human (HeLa) DNA.

Similar content being viewed by others

Data availability

Sequencing data are available in the ArrayExpress database under accession number E-MTAB-7152.

Code availability

We have released all the computational code in the manuscript’s accompanying GitHub page (https://github.com/sblab-bioinformatics/snAP-seq).

References

  1. Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).

    Article  CAS  Google Scholar 

  2. Wang, Y. et al. Direct detection and quantification of abasic sites for in vivo studies of DNA damage and repair. Nucl. Med. Biol. 36, 975–983 (2009).

    Article  CAS  Google Scholar 

  3. Kidane, D., Murphy, D. L. & Sweasy, J. B. Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 3, e128 (2014).

    Article  CAS  Google Scholar 

  4. Nakamura, J., La, D. K. & Swenberg, J. A. 5′-Nicked apurinic/apyrimidinic sites are resistant to β-elimination by β-polymerase and are persistent in human cultured cells after oxidative stress. J. Biol. Chem. 275, 5323–5328 (2000).

    Article  CAS  Google Scholar 

  5. Krokan, H. E. & Bjørås, M. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583 (2013).

    Article  Google Scholar 

  6. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. DNA N-glycosidases: properties of uracil–DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286–3294 (1977).

    CAS  PubMed  Google Scholar 

  7. Boiteux, S. & Radicella, J. P. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys. 377, 1–8 (2000).

    Article  CAS  Google Scholar 

  8. He, Y.-F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  Google Scholar 

  9. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  Google Scholar 

  10. Franchini, D.-M. et al. Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 9, e97754 (2014).

    Article  Google Scholar 

  11. Jacobs, A. L. & Schär, P. DNA glycosylases: in DNA repair and beyond. Chromosoma 121, 1–20 (2012).

    Article  CAS  Google Scholar 

  12. Lari, S.-U., Chen, C.-Y., Vertéssy, B. G., Morré, J. & Bennett, S. E. Quantitative determination of uracil residues in Escherichia coli DNA: contribution of ung, dug, and dut genes to uracil avoidance. DNA Repair 5, 1407–1420 (2006).

    Article  CAS  Google Scholar 

  13. Riedl, J., Fleming, A. M. & Burrows, C. J. Sequencing of DNA lesions facilitated by site-specific excision via base excision repair DNA glycosylases yielding ligatable gaps. J. Am. Chem. Soc. 138, 491–494 (2016).

    Article  CAS  Google Scholar 

  14. Shu, X. et al. Genome-wide mapping reveals that deoxyuridine is enriched in the human centromeric DNA. Nat. Chem. Biol. 14, 680 (2018).

    Article  CAS  Google Scholar 

  15. Loeb, L. A. & Preston, B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230 (1986).

    Article  CAS  Google Scholar 

  16. Boiteux, S. & Guillet, M. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3, 1–12 (2004).

    Article  CAS  Google Scholar 

  17. AlMutairi, F. et al. Association of DNA repair gene APE1 Asp148Glu polymorphism with breast cancer risk. Dis. Markers 2015, 869512 (2015).

    Article  Google Scholar 

  18. Lirussi, L. et al. APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget 7, 26293–26306 (2016).

    Article  Google Scholar 

  19. Chastain, P. D., Nakamura, J., Swenberg, J. & Kaufman, D. Nonrandom AP site distribution in highly proliferative cells. FASEB J. 20, 2612–2614 (2006).

    Article  CAS  Google Scholar 

  20. Chastain, P. D. et al. Abasic sites preferentially form at regions undergoing DNA replication. FASEB J. 24, 3674–3680 (2010).

    Article  CAS  Google Scholar 

  21. Kubo, K., Ide, H., Wallace, S. S. & Kow, Y. W. A novel sensitive and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry 31, 3703–3708 (1992).

    Article  CAS  Google Scholar 

  22. Kurisu, S. et al. Quantitation of DNA damage by an aldehyde reactive probe (ARP). Nucleic Acids Res. Suppl. 2001, 45–46 (2001).

    Article  Google Scholar 

  23. Ide, H. et al. Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry 32, 8276–8283 (1993).

    Article  CAS  Google Scholar 

  24. Hardisty, R. E., Kawasaki, F., Sahakyan, A. B. & Balasubramanian, S. Selective chemical labeling of natural T modifications in DNA. J. Am. Chem. Soc. 137, 9270–9272 (2015).

    Article  CAS  Google Scholar 

  25. Raiber, E.-A. et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 13, R69 (2012).

    Article  Google Scholar 

  26. Pfaffeneder, T. et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 10, 574–581 (2014).

    Article  CAS  Google Scholar 

  27. Pfaffeneder, T. et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. 123, 7146–7150 (2011).

    Article  Google Scholar 

  28. Rahimoff, R. et al. 5-Formyl- and 5-carboxydeoxycytidines do not cause accumulation of harmful repair intermediates in stem cells. J. Am. Chem. Soc. 139, 10359–10364 (2017).

    Article  CAS  Google Scholar 

  29. Zhang, H., Li, X., Martin, D. B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    Article  CAS  Google Scholar 

  30. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl Acad. Sci. USA 106, 3000–3005 (2009).

    Article  CAS  Google Scholar 

  31. Rashidian, M., Dozier, J. K., Lenevich, S. & Distefano, M. D. Selective labeling of polypeptides using protein farnesyltransferase via rapid oxime ligation. Chem. Commun. 46, 8998–9000 (2010).

    Article  CAS  Google Scholar 

  32. Lindahl, T. & Andersson, A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11, 3618–3623 (1972).

    Article  CAS  Google Scholar 

  33. Agarwal, P. et al. Hydrazino-Pictet–Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug. Chem. 24, 846–851 (2013).

    Article  CAS  Google Scholar 

  34. Xia, B. et al. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat. Methods 12, 1047–1050 (2015).

    Article  CAS  Google Scholar 

  35. Sugiyama, H. et al. Chemistry of thermal degradation of abasic sites in DNA. Mechanistic investigation on thermal DNA strand cleavage of alkylated DNA. Chem. Res. Toxicol. 7, 673–683 (1994).

    Article  CAS  Google Scholar 

  36. Lhomme, J., Constant, J. F. & Demeunynck, M. Abasic DNA structure, reactivity, and recognition. Biopolymers 52, 65–83 (1999).

    Article  CAS  Google Scholar 

  37. Bullard, W., Lopes da Rosa-Spiegler, J., Liu, S., Wang, Y. & Sabatini, R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J. Biol. Chem. 289, 20273–20282 (2014).

    Article  CAS  Google Scholar 

  38. Kawasaki, F. et al. Genome-wide mapping of 5-hydroxymethyluracil in the eukaryote parasite Leishmania. Genome Biol. 18, 23 (2017).

    Article  Google Scholar 

  39. Reynolds, D. et al. Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei. Nucleic Acids Res. 42, 9717–9729 (2014).

    Article  CAS  Google Scholar 

  40. van Luenen, H. G. A. M. et al. Glucosylated hydroxymethyluracil, DNA Base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909–921 (2012).

    Article  Google Scholar 

  41. Masaoka, A. et al. Mammalian 5-formyluracil−DNA glycosylase. 2. Role of SMUG1 uracil−DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 42, 5003–5012 (2003).

    Article  CAS  Google Scholar 

  42. Schormann, N., Ricciardi, R. & Chattopadhyay, D. Uracil–DNA glycosylases—structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci. Publ. Protein Soc. 23, 1667–1685 (2014).

    Article  CAS  Google Scholar 

  43. An, R. et al. Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS One 9, e115950 (2014).

    Article  Google Scholar 

  44. Masani, S., Han, L. & Yu, K. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol. Cell. Biol. 33, 1468–1473 (2013).

    Article  CAS  Google Scholar 

  45. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  46. Kow, Y. W. & Dare, A. Detection of abasic sites and oxidative DNA base damage using an ELISA-like assay. Methods 22, 164–169 (2000).

    Article  CAS  Google Scholar 

  47. Lensing, S. V. et al. DSBCapture: in situ capture and sequencing of DNA breaks. Nat. Methods 13, 855–857 (2016).

    Article  CAS  Google Scholar 

  48. Ding, Y., Fleming, A. M. & Burrows, C. J. Sequencing the mouse genome for the oxidatively modified base 8-oxo-7,8-dihydroguanine by OG-Seq. J. Am. Chem. Soc. 139, 2569–2572 (2017).

    Article  CAS  Google Scholar 

  49. Lindahl, T. & Karlstrom, O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 12, 5151–5154 (1973).

    Article  CAS  Google Scholar 

  50. Bailey, T. L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.B. is a senior investigator of the Wellcome Trust (grant no. 209441/Z/17/Z). The Balasubramanian laboratory is also supported by core funding from Cancer Research UK (C14303/A17197). Z.J.L. is supported by Pembroke College, Cambridge, and the Herchel Smith Fund. P.V.D. was funded by a Marie Curie Fellow of the European Union (grant no. FP7-PEOPLE-2013-IEF/624885).

Author information

Authors and Affiliations

Authors

Contributions

Z.J.L., P.V.D. and S.B. designed the study. Z.J.L. performed the experiments. S.M.C. performed the computational analysis. All the authors analysed and interpreted the data. Z.J.L. and S.B. wrote the manuscript, with contributions from all authors.

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

S.B. is a founder, adviser and shareholder of Cambridge Epigenetix Ltd. The methodology described in this manuscript is subject to a patent application.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and detailed Methods, Supplementary Figures, Supplementary Tables and NMR spectra.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z.J., Martínez Cuesta, S., van Delft, P. et al. Sequencing abasic sites in DNA at single-nucleotide resolution. Nat. Chem. 11, 629–637 (2019). https://doi.org/10.1038/s41557-019-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0279-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing