Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis

Abstract

Nitriles are found in many bioactive compounds, and are among the most versatile functional groups in organic chemistry. Despite many notable recent advances, however, there are no approaches that may be used for the preparation of di- or tri-substituted alkenyl nitriles. Related approaches that are broad in scope and can deliver the desired products in high stereoisomeric purity are especially scarce. Here, we describe the development of several efficient catalytic cross-metathesis strategies, which provide direct access to a considerable range of Z- or E-di-substituted cyano-substituted alkenes or their corresponding tri-substituted variants. Depending on the reaction type, a molybdenum-based monoaryloxide pyrrolide or chloride (MAC) complex may be the optimal choice. The utility of the approach, enhanced by an easy to apply protocol for utilization of substrates bearing an alcohol or a carboxylic acid moiety, is highlighted in the context of applications to the synthesis of biologically active compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biologically active compounds with an alkenyl nitrile or a related moiety.
Fig. 2: Challenges in designing reactions that deliver stereodefined alkenyl nitriles.
Fig. 3: A broadly applicable approach to Z-di-substituted alkenyl nitriles.
Fig. 4: E-di-substituted alkenyl nitriles.
Fig. 5: E- and Z-tri-substituted alkenyl nitriles.
Fig. 6: Utility of the method in chemical synthesis.

Similar content being viewed by others

Data availability

X-ray crystallographic data for compound 9a, are freely available from the Cambridge Crystallographic Data Centre (CCDC 1861573). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data in support of the findings of this study are available within the Article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 53, 7902–7917 (2010).

    Article  CAS  Google Scholar 

  2. Sugura, J. L., Martin, N. & Hanack, M. Oligo-2,6-naphthylenevinylenes—new building blocks for the preparation of photoluminescent polymeric materials. Eur. J. Org. Chem. 1999, 643–651 (1999).

    Article  Google Scholar 

  3. Allgäuer, D. S. et al. Quantification and theoretical analysis of the electrophilicities of Michael acceptors. J. Am. Chem. Soc. 139, 13318–13329 (2017).

    Article  Google Scholar 

  4. Serafimova, I. M. et al. Reversible targeting of nanocatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    Article  CAS  Google Scholar 

  5. Lee, D., Kim, D. & Yun, J. Highly enantioselective conjugate reduction of β,β-disubstituted α,β-unsaturated nitriles. Angew. Chem. Int. Ed. 45, 2785–2787 (2006).

    Article  CAS  Google Scholar 

  6. Yan, Q., Kong, D., Li, M., Hou, G. & Zi, G. Highly efficient Rh-catalyzed asymmetric hydrogenation of α,β-unsaturated nitriles. J. Am. Chem. Soc. 137, 10177–10181 (2015).

    Article  CAS  Google Scholar 

  7. Müller, M.-A. & Pfaltz, A. Asymmetric hydrogenation of α,β-unsaturated nitriles with base-activated iridium N,P ligand complexes. Angew. Chem. Int. Ed. 53, 8668–8671 (2014).

    Article  Google Scholar 

  8. Lee, J.-E. & Yun, J. Catalytic asymmetric boration of acyclic α,β-unsaturated esters and nitriles. Angew. Chem. Int. Ed. 47, 145–147 (2008).

    Article  CAS  Google Scholar 

  9. Deutsch, H. M. et al. Synthesis and pharmacology of site-specific cocaine abuse treatment agents: 2-(aminomethyl)-3-phenylbicyclo[2.2.2]- and -[2.2.1]alkane dopamine uptake inhibitors. J. Med. Chem. 42, 882–895 (1999).

    Article  CAS  Google Scholar 

  10. Janssen, P. A. et al. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethyenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, Rilpivirine). J. Med. Chem. 48, 1901–1909 (2005).

    Article  CAS  Google Scholar 

  11. Castellino, S. et al. Central nervous system disposition and metabolism of fosdevirine (GSK2248761), a non-nucleoside reverse transcriptase inhibitor: an LC-MS and matrix-assisted laser desorption/ionization imaging MS investigation into central nervous system toxicity. Chem. Res. Toxicol. 26, 241–251 (2013).

    Article  CAS  Google Scholar 

  12. Zhang, L.-H. et al. The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-a production with antitumor activity. Cancer Res. 66, 951–959 (2006).

    Article  CAS  Google Scholar 

  13. Ruchelman, A. L. et al. 1,1-Diarylalkenes as anticancer agents: dual inhibitors of tubulin polymerization and phosphodiesterase 4. Bioorg. Med. Chem. 19, 6356–6374 (2011).

    Article  CAS  Google Scholar 

  14. Searle, P. A., Molinski, T. F., Brzezinski, L. J. & Leahy, J. W. Absolute configuration of phorboxazoles A and B from the marine sponge Phorbas sp. 1. Macrolide and hemiketal rings. J. Am. Chem. Soc. 118, 9422–9423 (1996).

    Article  CAS  Google Scholar 

  15. Dalisay, D. S. & Molinski, T. F. Structure elucidation at the nanomole scale. 2. Hemi-phorboxazole A from Phorbas sp. Org. Lett. 11, 1967–1970 (2009).

    Article  CAS  Google Scholar 

  16. Doyle, M. P. et al. Lewis acid promoted reactions of diazocarbonyl compounds. 3. Synthesis of oxazoles from nitriles through intermediate β-imidatoalkenediazonium salts. J. Org. Chem. 45, 3657–3664 (1980).

    Article  CAS  Google Scholar 

  17. Vedejs, E., Piotrowski, D. W. & Tucci, F. C. Oxazolium-derived azomethine ylides. External oxazole activation and internal dipole trapping in the synthesis of aziridinomitosene. J. Org. Chem. 65, 5498–5505 (2000).

    Article  CAS  Google Scholar 

  18. Suganuma, M. et al. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res. 50, 3521–3525 (1990).

    CAS  PubMed  Google Scholar 

  19. Jang, H., Romiti, F., Torker, S. & Hoveyda, A. H. Catalytic diastereo- and enantioselective addition of versatile allyl groups to N–H ketimines. Nat. Chem. 9, 1269–1275 (2017).

    Article  CAS  Google Scholar 

  20. Zhang, Z. & Liebeskind, L. S. Palladium-catalyzed, copper(i)-mediated coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of boronic acids. Org. Lett. 8, 4331–4333 (2006).

    Article  CAS  Google Scholar 

  21. Powell, K. J., Han, L.-C., Sharma, P. & Moses, J. E. Chemoselective palladium-catalyzed cyanation of alkenyl halides. Org. Lett. 16, 2158–2161 (2014).

    Article  CAS  Google Scholar 

  22. Nakao, Y., Yada, A., Ebata, S. & Hiyama, T. A dramatic effect of Lewis-acid catalysts on nickel-catalyzed carbocyanation of alkynes. J. Am. Chem. Soc. 129, 2428–2429 (2007).

    Article  CAS  Google Scholar 

  23. Zhang, X., Xie, X. & Liu, Y. Nickel-catalyzed highly regioselective hydrocyanation of terminal alkynes with Zn(CN)2 using water as the hydrogen source. J. Am. Chem. Soc. 140, 7385–7389 (2018).

    Article  CAS  Google Scholar 

  24. Qin, C. & Jiao, N. Iron-facilitated direct oxidative C–H transformation of allylarenes or alkenes to alkenyl nitriles. J. Am. Chem. Soc. 132, 15893–15895 (2010).

    Article  CAS  Google Scholar 

  25. Murai, M., Hatano, R., Kitabata, S. & Ohe, K. Gallium (iii)-catalysed bromocyanation of alkynes: regio- and stereoselective synthesis of β-bromo-α,β-unsaturated nitriles. Chem. Commun. 47, 2375–2377 (2011).

    Article  CAS  Google Scholar 

  26. Wang, Z. & Chang, S. Copper-mediated transformation of organosilanes to nitriles with DMF and ammonium iodide. Org. Lett. 15, 1990–1993 (2013).

    Article  CAS  Google Scholar 

  27. Pradal, A. & Evano, G. A vinylic Rosenmund–von Braun reaction: practical synthesis of acrylonitriles. Chem. Commun. 50, 11907–11910 (2014).

    Article  CAS  Google Scholar 

  28. Gao, D.-W. et al. Direct access to versatile electrophiles via catalytic oxidative cyanation of alkenes. J. Am. Chem. Soc. 140, 8069–8073 (2018).

    Article  CAS  Google Scholar 

  29. Ye, F., Chen, J. & Ritter, T. Rh-catalyzed anti-Markovnikov hydrocyanation of terminal alkynes. J. Am. Chem. Soc. 139, 7184–7187 (2017).

    Article  CAS  Google Scholar 

  30. Zhang, T. Y., O’Toole, J. C. & Dunigan, J. M. An efficient and practical synthesis of diphenyl cyanomethylenephosphonate: applications to the stereoselective synthesis of cis-α,β-unsaturated nitriles. Tetrahedron Lett. 39, 1461–1464 (1998).

    Article  CAS  Google Scholar 

  31. Fang, F., Li, Y. & Tian, S. K. Stereoselective olefination of N-sulfonyl imines with stabilized phosphonium ylides for the synthesis of electron-deficient alkenes. Eur. J. Org. Chem. 2011, 1084–1091 (2011).

    Article  Google Scholar 

  32. Palomo, C. et al. A new version of the Peterson olefination using bis(trimethylsilyl)methyl derivatives and fluoride ion as catalyst. J. Org. Chem. 55, 2498–2503 (1990).

    Article  CAS  Google Scholar 

  33. Kojima, S., Fukuzaki, T., Yamakawa, A. & Murai, Y. Highly (Z)-selective synthesis of β-monosubstituted α,β-unsaturated cyanides using the Peterson reaction. Org. Lett. 6, 3917–3920 (2004).

    Article  CAS  Google Scholar 

  34. Chakraborty, S., Das, U. K., Ben-David, Y. & Milstein, D. Manganese catalyzed α-olefination of nitriles by primary alcohols. J. Am. Chem. Soc. 139, 11710–11713 (2017).

    Article  CAS  Google Scholar 

  35. Yamamoto, Y., Asatani, T. & Kirai, N. Copper-catalyzed stereoselective hydroarylation of 3-aryl-2-propynenitrile with arylboronic acids. Adv. Synth. Catal. 351, 1243–1249 (2009).

    Article  CAS  Google Scholar 

  36. Barrado, A. G., Zielinski, A., Goddard, R. & Alcarazo, M. Regio- and stereoselective chlorocyanation of alkynes. Angew. Chem. Int. Ed. 56, 13401–13405 (2017).

    Article  CAS  Google Scholar 

  37. Wang, X. & Studer, A. Metal-free direct C–H cyanation of alkenes. Angew. Chem. Int. Ed. 57, 11792–11796 (2018).

    Article  CAS  Google Scholar 

  38. Han, Y.-P. et al. Lewis acid mediated tandem reaction of propargylic alcohols with hydroxylamine hydrochloride to give α,β-unsaturated amides and alkenyl nitrile. J. Org. Chem. 80, 9200–9207 (2015).

    Article  CAS  Google Scholar 

  39. Su, W., Gong, T.-J., Xiao, B. & Fu, Y. Rhodium(iii)-catalyzed cyanation of vinylic C–H bonds: N-cyano-N-phenyl-p-toluensulfonamide as a cyanation reagent. Chem. Commun. 51, 11848–11851 (2015).

    Article  CAS  Google Scholar 

  40. Suginome, M., Yamamoto, A. & Murakami, M. Palladium-catalyzed addition of cyanoboranes to alkynes: regio- and stereoselective synthesis of α,β-unsaturated β-boryl nitriles. Angew. Chem. Int. Ed. 44, 2380–2382 (2005).

    Article  CAS  Google Scholar 

  41. Crowe, W. E. & Goldberg, D. R. Acrylonitrile cross-metathesis: coaxing olefin metathesis reactivity from a reluctant substrate. J. Am. Chem. Soc. 117, 5162–5163 (1995).

    Article  CAS  Google Scholar 

  42. Randl, S., Gessler, S., Wakamatsu, H. & Blechert, S. Highly selective cross-metathesis with acrylonitrile using a phosphine free Ru-complex. Synlett 2001, 430–432 (2001).

    Article  Google Scholar 

  43. Miao, X., Dixneuf, P. H., Fischmeister, C. & Bruneau, C. A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. Green Chem. 13, 2258–2271 (2011).

    Article  CAS  Google Scholar 

  44. Gawin, R. et al. Cyclic alkyl amino ruthenium complexes—efficient catalysts for macrocyclization and acrylonitrile cross metathesis. ACS Catal. 7, 5443–5449 (2017).

    Article  CAS  Google Scholar 

  45. Michrowska, A. et al. Nitro-substituted Hoveyda–Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. J. Am. Chem. Soc. 126, 9318–9325 (2004).

    Article  CAS  Google Scholar 

  46. Bieniek, M. et al. Advanced fine-tuning of Grubbs/Hoveyda olefin metathesis catalysts: a further step toward an optimum balance between antinomic principles. J. Am. Chem. Soc. 128, 13652–13653 (2006).

    Article  CAS  Google Scholar 

  47. Bai, C.-X., Lu, X.-B., He, R., Zhang, W.-Z. & Feng, X.-J. Lewis-acid assisted cross-metathesis of acrylonitrile with functionalized olefins catalysed by phosphine-free ruthenium carbene complex. Org. Biomol. Chem. 3, 4139–4142 (2005).

    Article  CAS  Google Scholar 

  48. Wiberg, K. B., Wang, Y., Petersson, G. A. & Bailey, W. F. Intramolecular nonbonded attractive interactions: 1-substituted propenes. J. Chem. Theory Comput. 5, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  49. Torker, S., Koh, M. J., Khan, K. M. & Hoveyda, A. H. Regarding a persisting puzzle in olefin metathesis with Ru complexes: why are transformations of alkenes with a small substituent Z-selective? Organometallics 35, 543–562 (2016).

    Article  CAS  Google Scholar 

  50. Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531, 459–465 (2016).

    Article  CAS  Google Scholar 

  51. Nguyen, T. T. et al. Kinetically controlled E-selective catalytic olefin metathesis. Science 352, 569–575 (2016).

    Article  CAS  Google Scholar 

  52. Hoveyda, A. H., Khan, R. K. M., Torker, S. & Malcolmson, S. J. In Handbook of Metathesis (eds Grubbs, R. H., Wenzel, A. G., O’Leary, D. J. & Khosravi, E.) 503–562 (Wiley-VCH, Weinheim, 2014).

  53. Xu, C., Shen, X. & Hoveyda, A. H. In situ methylene capping: a general strategy for efficient stereoretentive catalytic olefin metathesis. The concept, methodological implications, and applications to synthesis of biologically active compounds. J. Am. Chem. Soc. 139, 10919–10928 (2017).

    Article  CAS  Google Scholar 

  54. Ahmed, T. S. & Grubbs, R. H. Fast-initiating, ruthenium-based catalysts for improved activity in highly E-selective cross metathesis. J. Am. Chem. Soc. 139, 1532–1537 (2017).

    Article  CAS  Google Scholar 

  55. Ficken, G. E., Linstead, R. P., Stephen, E. & Whalley, M. Conjugated macrocycles. Part XXXI. Catalytic hydrogenation of tetraazaporphins, with a note on its stereochemical course. J. Chem. Soc. 3879–3886 (1958).

  56. Lam, J. K. et al. Synthesis and evaluation of molybdenum and tungsten monoaryloxide halide alkylidene complexes for Z-selective cross-metathesis of cyclooctene and Z-1,2-dichloroethylene. J. Am. Chem. Soc. 138, 15774–15783 (2016).

    Article  CAS  Google Scholar 

  57. Nguyen, T. T., Koh, M. J., Mann, T. J., Schrock, R. R. & Hoveyda, A. H. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis. Nature 552, 347–354 (2017).

    Article  CAS  Google Scholar 

  58. Haribal, M., Yang, Z., Attygale, A. B., Renwick, J. A. A. & Meinwald, J. A cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent larvae of Pieris napi oleracea. J. Nat. Prod. 64, 440–443 (2001).

    Article  CAS  Google Scholar 

  59. Olsen, C. E., Møller, B. L. & Motawia, M. S. Synthesis of the allelochemical alliarinoside present in garlic mustard (Alliaria petiolata), an invasive plant species in north America. Carbohydr. Res. 394, 13–16 (2014).

    Article  CAS  Google Scholar 

  60. Stockman, R. A., Sinclair, A., Arini, L. G., Szeto, P. & Hughes, D. L. A two-directional synthesis of (±)-perhydrohistrionicotoxin. J. Org. Chem. 69, 1598–1602 (2004).

    Article  CAS  Google Scholar 

  61. Walton, J. G. A. et al. Synthesis and evaluation of indatraline-based inhibitors of trypanothione reductase. ChemMedChem 6, 321–328 (2011).

    Article  CAS  Google Scholar 

  62. EntreMed presents multi-mechanism antitumor data for ENMD-1420 in preclinical models, PipelineReview.com (17 April 2007); http://www.pipelinereview.com/index.php/2007041711056/Small-Molecules/EntreMed-Presents-Multi-Mechanism-Antitumor-Data-for-ENMD-1420-in-Preclinical-Models.html.

  63. Pelter, A., Smith, K., Buss, D. & Norbury, A. Hindered organoboron groups in organic synthesis. 15. Preparation and properties of di(2,4,6-triisopropylphenyl)borane. Tetrahedron Lett. 32, 6239–6242 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Institutes of Health (GM-59426). T.T.N. was supported as a John LaMattina Graduate Fellow in Chemical Synthesis. The authors thank S. Torker for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., T.T.N. and M.J.K. identified the optimal catalyst and conditions, developed the method and performed the experiments to demonstrate utility. The Mo complexes used in this study were designed and developed as part of a long-standing collaboration between the research groups of R.R.S. and A.H.H. A.H.H. directed the investigations and composed the manuscript with revisions provided by the other authors.

Corresponding author

Correspondence to Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

All experimental and analytical data for the compounds used and generated in the study.

Crystallographic data

CIF for compound 9a; CCDC reference: 1861573

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Nguyen, T.T., Koh, M.J. et al. E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019). https://doi.org/10.1038/s41557-019-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0233-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing