Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-intuitive rotational reorientation in collisions of NO(A 2Σ+) with Ne from direct measurement of a four-vector correlation

Abstract

Stereodynamic descriptions of molecular collisions concern the angular correlations that exist between vector properties of the motion of the participating species, including their velocities and rotational angular momenta. Measurements of vector correlations provide a unique view of the forces acting during collisions, and are a stringent test of electronic-structure calculations of molecular interactions. Here, we present direct measurement of the four-vector correlation between initial and final relative velocities and rotational angular momenta in a molecular collision. This property, which quantifies the extent to which a molecule retains a memory of its initial sense of rotation, or handedness, as a function of scattering angle, yields insight into the dynamics of a molecular collision. We report non-intuitive changes in the handedness for specific states and scattering angles, reproduced by classical and quantum scattering calculations. Comparison to calculations on different ab initio potential energy surfaces demonstrates this measurement’s exquisite sensitivity to the underlying intermolecular forces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of two possible correlations between the initial and final rotational angular momentum, resolved at different scattering angles.
Fig. 2: Schematic of the experimental set-up and Newton diagram showing the directions of the velocity vectors describing the colliders before collision.
Fig. 3: Velocity map images used to measure the k–j–k′–j′ correlation.
Fig. 4: Measured and calculated values of C(θ) for each N′ final state, revealing the variation of the orientation transfer with scattering angle.

Similar content being viewed by others

References

  1. Wayne, R. P. Chemistry of Atmospheres 3rd edn (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  2. Roueff, E. & Lique, F. Molecular excitation in the interstellar medium: recent advances in collisional, radiative, and chemical processes. Chem. Rev. 113, 8906–8938 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Najm, H. N., Paul, P. H., Mueller, C. J. & Wyckoff, P. S. On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113, 312–332 (1998).

    Article  CAS  Google Scholar 

  4. Bishwakarma, C. K. et al. State-to-state inelastic scattering of O2 with helium. J. Phys. Chem. A 120, 868–874 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Brouard, M. et al. The fully quantum state-resolved inelastic scattering of NO(X) plus Ne: experiment and theory. Mol. Phys. 111, 1759–1771 (2013).

    Article  CAS  Google Scholar 

  6. de Jongh, T. et al. Imaging diffraction oscillations for inelastic collisions of NO radicals with He and D2. J. Chem. Phys. 147, 013918 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Sharples, T. R., Luxford, T. F. M., Townsend, D., McKendrick, K. G. & Costen, M. L. Rotationally inelastic scattering of NO(A 2Σ+) + Ar: differential cross sections and rotational angular momentum polarization. J. Chem. Phys. 143, 204301 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. McGurk, S. J., Halpern, J. B., McKendrick, K. G. & Costen, M. L. Parity-dependent rotational energy transfer in CN(A 2Π, ν = 4, j F1ε) + N2, O2, and CO2 collisions. J. Phys. Chem. A 118, 2007–2017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paterson, G., Costen, M. L. & McKendrick, K. G. Collisional depolarisation of rotational angular momentum: influence of the potential energy surface on the collision dynamics? Int. Rev. Phys. Chem. 31, 69–109 (2012).

    Article  CAS  Google Scholar 

  10. Paterson, G., Costen, M. L. & McKendrick, K. G. Collisional depolarization of rotational angular momentum: what are the observables and how can they be measured? Mol. Phys. 109, 2565–2585 (2011).

    Article  CAS  Google Scholar 

  11. Chadwick, H. et al. The collisional depolarization of OH(A 2Σ+) and NO(A 2Σ+) with Kr. J. Chem. Phys. 140, 054306 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Brouard, M. et al. Rotational alignment effects in NO(X) plus Ar inelastic collisions: an experimental study. J. Chem. Phys. 138, 014310 (2013).

    Article  CAS  Google Scholar 

  13. Brouard, M. et al. Rotational orientation effects in NO(X) plus Ar inelastic collisions. J. Phys. Chem. A 119, 12404–12416 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Lorenz, K. et al. Direct measurement of the preferred sense of NO rotation after collision with argon. Science 293, 2063–2066 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Luxford, T. F. M., Sharples, T. R., McKendrick, K. G. & Costen, M. L. Experimental testing of ab initio potential energy surfaces: stereodynamics of NO(A 2Σ+) + Ne inelastic scattering at multiple collision energies. J. Chem. Phys. 145, 174304 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Luxford, T. F. M., Sharples, T. R., Townsend, D., McKendrick, K. G. & Costen, M. L. Comparative stereodynamics in molecule–atom and molecule–molecule rotational energy transfer: NO(A 2Σ+) + He and D2. J. Chem. Phys. 145, 084312 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Nichols, B. et al. Steric effects and quantum interference in the inelastic scattering of NO(X) plus Ar. Chem. Sci. 6, 2202–2210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brouard, M. et al. Stereodynamics in NO(X) plus Ar inelastic collisions. J. Chem. Phys. 144, 224301 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Herschbach, D. R. Nobel Lecture: Molecular Dynamics of Elementary Chemical Reactions. Nobelprize.org http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1986/herschbach-lecture.html (2018).

  20. Balint-Kurti, G. G. & Vasyutinskii, O. S. Vector correlation analysis for inelastic and reactive collisions between partners possessing spin and orbital angular momentum. J. Phys. Chem. A 113, 14281–14290 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. de Miranda, M. P. & Clary, D. C. Quantum dynamical stereochemistry of atom–diatom reactions. J. Chem. Phys. 106, 4509–4521 (1997).

    Article  Google Scholar 

  22. Collins, T. L. D., McCaffery, A. J. & Wynn, M. J. 2-Color sub-Doppler circular-dichroism—a 4-vector correlation molecular-dynamics experiment. Phys. Rev. Lett. 66, 137–140 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, T. L. D., McCaffery, A. J. & Wynn, M. J. 2-Color sub-Doppler circular-dichroism—a 4-vector correlation molecular-dynamics experiment for inelastic and reactive collisions. Faraday Discuss. 91, 91–96 (1991).

    Article  CAS  Google Scholar 

  24. Perreault, W. E., Mukherjee, N. & Zare, R. N. Quantum control of molecular collisions at 1 kelvin. Science 358, 356–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Onvlee, J. et al. Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms. Nat. Chem. 9, 226–233 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  27. Khare, V., Kouri, D. J. & Hoffman, D. K. On Jz-preserving propensities in molecular-collisions. 1. Quantal coupled states and classical impulsive approximations. J. Chem. Phys. 74, 2275–2286 (1981).

    Article  Google Scholar 

  28. Khare, V., Kouri, D. J. & Hoffman, D. K. On a Jz-preserving propensity in molecular-collisions. 2. Close-coupling study of state-to-state differential cross-sections. J. Chem. Phys. 76, 4493–4501 (1982).

    Article  CAS  Google Scholar 

  29. Chandler, D. W. & Farrow, R. L. Measurement of rotational energy-transfer rates for HD (v = 1) in collisions with thermal HD. J. Chem. Phys. 85, 810–816 (1986).

    Article  CAS  Google Scholar 

  30. McCaffery, A. J., Proctor, M. J. & Whitaker, B. J. Rotational energy-transfer—polarization and scaling. Annu. Rev. Phys. Chem. 37, 223–244 (1986).

    Article  CAS  Google Scholar 

  31. Sitz, G. O. & Farrow, R. L. Preparation and decay of alignment in N2 (v = 1). J. Chem. Phys. 101, 4682–4687 (1994).

    Article  CAS  Google Scholar 

  32. Zare, R. N. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).

    Google Scholar 

  33. Fano, U. & Macek, J. H. Impact excitation and polarization of emitted light. Rev. Mod. Phys. 45, 553–573 (1973).

    Article  CAS  Google Scholar 

  34. Orr-Ewing, A. J. & Zare, R. N. Orientation and alignment of reaction-products. Annu. Rev. Phys. Chem. 45, 315–366 (1994).

    Article  CAS  Google Scholar 

  35. Alexander, M. H., Manolopoulos, D. E., Werner, H.-J. & Follmeg, B. Hibridon; http://www2.chem.umd.edu/groups/alexander/hibridon/hib43/hibhelp.html

  36. Pajon-Suarez, P., Rojas-Lorenzo, G., Rubayo-Soneira, J. & Hernandez-Lamoneda, R. The intermolecular potential of NO(A 2Σ+)-Ne: an ab initio study. Chem. Phys. Lett. 421, 389–394 (2006).

    Article  CAS  Google Scholar 

  37. Cybulski, H. & Fernandez, B. Ab initio ground- and excited-state intermolecular potential energy surfaces for the NO–Ne and NO–Ar van der Waals complexes. J. Phys. Chem. A 116, 7319–7328 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Norman, J. B. & Field, R. W. Collision-induced angular-momentum reorientation and rotational energy-transfer in CaF(A 2Π1/2)–Ar thermal collisions. J. Chem. Phys. 92, 76–89 (1990).

    Article  CAS  Google Scholar 

  39. Brouard, M., Hornung, B. & Aoiz, F. J. Origin of collision-induced molecular orientation. Phys. Rev. Lett. 111, 183202 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Dong, W. R., Mukherjee, N. & Zare, R. N. Optical preparation of H2 rovibrational levels with almost complete population transfer. J. Chem. Phys. 139, 074204 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mukherjee, N., Dong, W. R. & Zare, R. N. Coherent superposition of M-states in a single rovibrational level of H2 by Stark-induced adiabatic Raman passage. J. Chem. Phys. 140, 074201 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Aoiz, F. J., Verdasco, J. E., Herrero, V. J., Saez-Rabanos, V. & Alexander, M. A. Attractive and repulsive interactions in the inelastic scattering of NO by Ar: a comparison between classical trajectory and close-coupling quantum mechanical results. J. Chem. Phys. 119, 5860–5866 (2003).

    Article  CAS  Google Scholar 

  43. de Miranda, M. P., Aoiz, F. J., Banares, L. & Saez-Rabanos, V. A unified quantal and classical description of the stereodynamics of elementary chemical reactions: state-resolved k-k'-j' vector correlation for the H.D2(v = 0, j = 0) reaction. J. Chem. Phys. 111, 5368–5383 (1999).

    Article  CAS  Google Scholar 

  44. de Miranda, M. P. & Aoiz, F. J. Interpretation of quantum and classical angular momentum polarization moments. Phys. Rev. Lett. 93, 083201 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Brouard, M. & Vallance, C. (eds) Tutorials in Molecular Reaction Dynamics (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

  46. Aldegunde, J. et al. How reactants polarization can be used to change and unravel chemical reactivity. J. Phys. Chem. A 109, 6200–6217 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Aoiz, F. J., Brouard, M., Eyles, C. J., Klos, J. & de Miranda, M. P. The collisional depolarization of (2S+1)Σ radicals by closed shell atoms: theory and application to OH(A 2Σ+)+Ar. J. Chem. Phys. 130, 044305 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Brouard, M., Chadwick, H., Eyles, C. J., Aoiz, F. J. & Klos, J. The k–j–j′ vector correlation in inelastic and reactive scattering. J. Chem. Phys. 135, 084305 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK EPSRC via grants EP/J017973/01 and EP/P001459/1. J.G.L. thanks the EPSRC for provision of a DTP studentship (EP/N509474/1). T.F.M.L. acknowledges Heriot-Watt University for a James Watt PhD scholarship. P.G.J. and F.J.A. acknowledge funding by the Spanish Ministry of Science and Innovation (grant MINECO/FEDER-CTQ2015-65033-P) and E. Verdasco for support with calculations. P.G.J. acknowledges funding by Fundación Salamanca City of Culture and Knowledge. The work of D.W.C. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under grant 2019 SNL 17014098. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The authors also acknowledge the assistance of P.J. Dagdigian, J. Kłos and M.H. Alexander in performing quantum scattering calculations.

Author information

Authors and Affiliations

Authors

Contributions

The research project was conceived and supervised by M.L.C. Experiments were carried out by T.R.S., J.G.L., T.F.M.L. and D.W.C. Data analysis was performed by T.R.S. and J.G.L. Quantum scattering calculations were carried out by T.R.S. Quasi-classical trajectory calculations were performed by P.G.J. and F.J.A. Kinematic apse calculations were performed by M.L.C. and T.R.S. The results were interpreted by T.R.S., P.G.J., F.J.A., D.W.C., K.G.M. and M.L.C. The manuscript was written by T.R.S. with contributions from all authors.

Corresponding authors

Correspondence to David W. Chandler or Matthew L. Costen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Experimental Methods, Supplementary Theoretical Methods, Supplementary Analysis, Supplementary Figures 1–7, Supplementary Table 1

Supplementary Video 1

Animated trajectory on the CF PES leading to N' = 5 (θ = 60°) for which a reversal in the handedness of the NO rotation leads to a change in the direction in which the rotational angular momentum points relative to k. The three atoms are shown as spheres (Ar, yellow; N, blue; O, red) while the rotational angular momentum is shown as a grey line.

Supplementary Video 2

Animated trajectory on the CF PES leading to N' = 5 (θ = 60°) for which a small change in the angle between j and j′ leads to a change in the direction in which the rotational angular momentum points relative to k. The three atoms are shown as spheres (Ar: yellow, N: blue, O: red) while the rotational angular momentum is shown as a grey line.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharples, T.R., Leng, J.G., Luxford, T.F.M. et al. Non-intuitive rotational reorientation in collisions of NO(A 2Σ+) with Ne from direct measurement of a four-vector correlation. Nature Chem 10, 1148–1153 (2018). https://doi.org/10.1038/s41557-018-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0121-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing