Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles

Abstract

Gene editing is an important genetic engineering technique that enables gene manipulation at the molecular level. It mainly relies on engineered nucleases of biological origin, whose precise functions cannot be replicated in any currently known abiotic artificial material. Here, we show that chiral cysteine-modified CdTe nanoparticles can specifically recognize and, following photonic excitation, cut at the restriction site GAT′ATC (′ indicates the cut site) in double-stranded DNA exceeding 90 base pairs, mimicking a restriction endonuclease. Although photoinduced reactive oxygen species are found to be responsible for the cleavage activity, the sequence selectivity arises from the affinity between cysteine and the conformation of the specific DNA sequence, as confirmed by quantum-chemical calculations. In addition, we demonstrate non-enzymatic sequence-specific DNA incision in living cells and in vivo using these CdTe nanoparticles, which may help in the design of abiotic materials for gene editing and other biological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy for site-selective DNA cleavage.
Fig. 2: Chiral CdTe nanoparticle preparation and characterization.
Fig. 3: Site-selective DNA cleavage.
Fig. 4: Specific binding and conformational change between target DNA and chiral nanoparticles.
Fig. 5: Mechanism of DNA cleavage.
Fig. 6: Photoinduced DNA cleavage in living cells and in vivo.

Similar content being viewed by others

References

  1. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, M. et al. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 9, 287–294 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Pelaz, B. et al. The state of nanoparticle-based nanoscience and biotechnology: progress, promises, and challenges. ACS Nano 6, 8468–8483 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotech. 7, 459–464 (2012).

    Article  CAS  Google Scholar 

  6. Wang, X. Y., Hu, Y. H. & Wei, H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3, 41–60 (2016).

    Article  CAS  Google Scholar 

  7. Aiba, Y., Sumaoka, J. & Komiyama, M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem. Soc. Rev. 40, 5657–5668 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Xiao, X. J., Wu, T. B., Gu, F. D. & Zhao, M. P. Generation of artificial sequence-specific nucleases via a preassembled inert-template. Chem. Sci. 7, 2051–2057 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, B., Sun, Z., Huang, P. J. & Liu, J. Hydrogen peroxide displacing DNA from nanoceria: mechanism and detection of glucose in serum. J. Am. Chem. Soc. 137, 1290–1295 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotech. 8, 187–192 (2013).

    Article  CAS  Google Scholar 

  11. Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rouge, J. L. et al. Ribozyme–spherical nucleic acids. J. Am. Chem. Soc. 137, 10528–10531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, H. J. et al. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. 54, 7176–7180 (2015).

    Article  CAS  Google Scholar 

  14. Huang, Y. et al. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. 55, 6646–6650 (2016).

    Article  CAS  Google Scholar 

  15. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Z., Zan, H., Pone, E. J., Mai, T. & Casali, P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 12, 517–531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43, D298–D299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kameshima, W. et al. Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew. Chem. Int. Ed. 52, 13681–13684 (2013).

    Article  CAS  Google Scholar 

  21. Wang, X., Sun, G., Li, N. & Chen, P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45, 2239–2262 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotech. 11, 1112–1119 (2016).

    Article  CAS  Google Scholar 

  23. Zrazhevskiy, P. & Gao, X. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 4, 1619 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, W. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Li, S. et al. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, X. et al. Gold–quantum dot core–satellite assemblies for lighting up microRNA in vitro and in vivo. Small 12, 4662–4668 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. B. et al. Self-assembled framework enhances electronic communication of ultrasmall-sized nanoparticles for exceptional solar hydrogen evolution. J. Am. Chem. Soc. 139, 4789–4796 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Feng, W. et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light-–matter interactions for chiral semiconductors. Sci. Adv. 3, e1601159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotech. 5, 783–787 (2010).

    Article  CAS  Google Scholar 

  32. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Y. L., Yang, M., Sun, K., Tang, Z. Y. & Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Boersma, A. J. et al. Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst. Nat. Chem. 2, 991–995 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Mukhina, M. V. et al. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 15, 2844–2851 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, F. L. et al. A singlet oxygen generating agent by chirality-dependent plasmonic shell–satellite nanoassembly. Adv. Mater. 29, 1606864 (2017).

    Article  CAS  Google Scholar 

  38. Lesnyak, V., Gaponik, N. & Eychmuller, A. Colloidal semiconductor nanocrystals: the aqueous approach. Chem. Soc. Rev. 42, 2905–2929 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotech. 11, 152–156 (2016).

    Article  CAS  Google Scholar 

  40. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Yan, Z. & Wang, J. SPA-LN: a scoring function of ligand–nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Res. 45, e110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Boles, M. A. & Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: effective ‘patchiness’ via anisotropic steric interaction. J. Am. Chem. Soc. 136, 5868–5871 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Y. A., Wu, H. M., Williams, K. R. & Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 44, 6712–6715 (2005).

    Article  CAS  Google Scholar 

  45. Chen, Y. Z. et al. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 139, 2035–2044 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Li, H. et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Xue, T. et al. Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat. Commun. 5, 3200 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Chandrasekar, J. & Silverman, S. K. Catalytic DNA with phosphatase activity. Proc. Natl Acad. Sci. USA 110, 5315–5320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, M. et al. Intracellular localization of nanoparticle dimers by chirality reversal. Nat. Commun. 8, 1847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, J. et al. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev. 44, 3036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (21522102, 21631005, 21771090, 21673104 and 21471068). We also thank the Brazilian funding agencies Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grants 2012/15147-4 and 2013/07296-2) for financial support. The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) and UFSCar for providing the high-performance computing resources of the SDumont supercomputer (http://sdumont.lncc.br) and of the Could@UFSCar, respectively, both of which have contributed to the results reported in this paper. A.F.d.M. thanks Ministério da Educação/Programa de Educação Tutorial for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.K., N.A.K. and C.X. conceived the project and designed the experiments. M.S. was responsible for DNA cutting and spectroscopic measurements. L.X. and A.Q. carried out cell and ITC experiments. T.H. and A.Q. were responsible for chiral CdTe nanoparticles synthesis and DNA electrophoresis. W.M. and C.H. carried out synchrotron small-angle X-ray scattering, X-ray photoelectron spectroscopy and transient absorption spectrum experiments. F.M.C and A.F.M. developed the models for free energy calculation. P.Z. and X.W. developed the DFT model. H.K. and M.S. carried out the studies in vivo. H.K. conceptualized the work. C.X. supervised the study and N.A.K. provided advice regarding the idea. H.K. and C.X. analysed the results and wrote the manuscript. H.K., C.X. and N.A.K. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hua Kuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary characterization and calculation details, Supplementary Figures 1–156, Supplementary Tables 1–17

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Xu, L., Qu, A. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nature Chem 10, 821–830 (2018). https://doi.org/10.1038/s41557-018-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0083-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing