Rearrangements that change the connectivity of a carbon skeleton are often useful in synthesis, but it can be difficult to follow their mechanisms. Scanning probe microscopy can be used to manipulate a skeletal rearrangement at the single-molecule level, while monitoring the geometry of reactants, intermediates and final products with atomic resolution. We studied the reductive rearrangement of 1,1-dibromo alkenes to polyynes on a NaCl surface at 5 K, a reaction that resembles the Fritsch–Buttenberg–Wiechell rearrangement. Voltage pulses were used to cleave one C–Br bond, forming a radical, then to cleave the remaining C–Br bond, triggering the rearrangement. These experiments provide structural insight into the bromo-vinyl radical intermediates, showing that the C=C–Br unit is nonlinear. Long polyynes, up to the octayne Ph–(C≡C)8–Ph, have been prepared in this way. The control of skeletal rearrangements opens a new window on carbon-rich materials and extends the toolbox for molecular synthesis by atom manipulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Schrettl, S. et al. Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nat. Chem. 6, 468–476 (2014).

  2. 2.

    Wang, C. et al. Oligoyne single molecule wires. J. Am. Chem. Soc. 131, 15647–15654 (2009).

  3. 3.

    Eisler, S. et al. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005).

  4. 4.

    Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).

  5. 5.

    Tykwinski, R. R. Carbyne: the molecular approach. Chem. Rec. 15, 1060–1074 (2015).

  6. 6.

    Hoye, R. H., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. The hexadehydro-Diels–Alder reaction. Nature 490, 208–212 (2012).

  7. 7.

    Chalifoux, W. A. & Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967–971 (2010).

  8. 8.

    Stahl, J. et al. sp Carbon chains surrounded by sp 3 carbon double helices: a class of molecules that are accessible by self-assembly and models for ‘insulated’ molecular-scale devices. Angew. Chem. Int. Ed. 41, 1871–1876 (2002).

  9. 9.

    Movsisyan, L. D. et al. Polyyne rotaxanes: stabilization by encapsulation. J. Am. Chem. Soc. 138, 1366–1376 (2016).

  10. 10.

    Diederich, F. et al. All-carbon molecules: evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245, 1088–1090 (1989).

  11. 11.

    Fritsch, P. IV. Ueber die Darstellung von Diphenylacetaldehyd und eine neue Synthese von Tolanderivaten. Liebigs Ann. Chem. 279, 319–323 (1894).

  12. 12.

    Buttenberg, W. P. Condensation des Dichloracetals mit Phenol und Toluol. Liebigs Ann. Chem. 279, 324–337 (1894).

  13. 13.

    Wiechell, H. Condensation des Dichloracetals mit Anisol und Phenetol. Liebigs Ann. Chem. 279, 337–344 (1894).

  14. 14.

    Jahnke, E. & Tykwinski, R. R. The Fritsch–Buttenberg–Wiechell rearrangement: modern applications for an old reaction. Chem. Commun. 46, 3235–3249 (2010).

  15. 15.

    Corey, E. J. & Fuchs, P. L. A synthetic method for formyl→ethynyl conversion (RCHO→RC≡CH or RC≡CR’). Tetrahedron Lett. 13, 3769–3772 (1972).

  16. 16.

    Eisler, S. & Tykwinski, R. R. Migrating alkynes in vinylidene carbenoids: an unprecedented route to polyynes. J. Am. Chem. Soc. 122, 10736–10737 (2000).

  17. 17.

    Luu, T., Morisaki, Y., Cunningham, N. & Tykwinski, R. R. One-pot formation and derivatization of di- and triynes based on the Fritsch–Buttenberg–Wiechell rearrangement. J. Org. Chem. 72, 9622–9629 (2007).

  18. 18.

    Stang, P. J. Unsaturated carbenes. Chem. Rev. 78, 383–405 (1978).

  19. 19.

    Knorr, R. Alkylidenecarbenes, alkylidenecarbenoids, and competing species: which is responsible for vinylic nucleophilic substitution, [1+2] cycloadditions, 1,5-CH insertions, and the Fritsch–Buttenberg–Wiechell rearrangement? Chem. Rev. 104, 3795–3849 (2004).

  20. 20.

    Pritchard, J. G. & Bothner-By, A. A. Base-initiated dehydrohalogenation and rearrangement of 1-halo-2,2-diphenylethylenes in t-butyl alcohol. The effect of deuterated solvent. J. Phys. Chem. 64, 1271–1277 (1960).

  21. 21.

    Kunishima, M., Hioki, K., Ohara, T. & Tani, S. Generation of alkylidenecarbenes from 1,1-dibromoalk-1-enes by the reaction with samarium diiodide in hexamethylphosphoric triamide-benzene. J. Chem. Soc., Chem. Commun. 219–220 (1992).

  22. 22.

    Umeda, R., Yuasa, T., Anahara, N. & Nishiyama, Y. Fritsch–Buttenberg–Wiechell rearrangement to alkynes from gem-dihaloalkenes with lanthanum metal. J. Organomet. Chem. 696, 1916–1919 (2011).

  23. 23.

    Binnig, G. & Rohrer, H. Scanning tunneling microscopy—from birth to adolescence. Angew. Chem. Int. Ed. Engl. 26, 606–614 (1987).

  24. 24.

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

  25. 25.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

  26. 26.

    Gross, L. et al. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010).

  27. 27.

    de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

  28. 28.

    Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–493 (2016).

  29. 29.

    He, Y. et al. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat. Chem. 9, 33–38 (2016).

  30. 30.

    Sun, Q. et al. Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016).

  31. 31.

    Kawai, S. et al. Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nat. Commun. 7, 12711 (2016).

  32. 32.

    Riss, A. et al. Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. Nat. Chem. 8, 678–683 (2016).

  33. 33.

    Stetsovych, O. et al. From helical to planar chirality by on-surface chemistry. Nat. Chem. 9, 213–218 (2017).

  34. 34.

    Shiotari, A. et al. Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Nat. Commun. 8, 16089 (2017).

  35. 35.

    Sun, Q. et al. On-surface formation of cumulene by dehalogenative homocoupling of alkenyl gem-dibromides. Angew. Chem. Int. Ed. 56, 12165–12169 (2017).

  36. 36.

    Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

  37. 37.

    Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

  38. 38.

    Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).

  39. 39.

    Pavliček, N. et al. Generation and characterization of a meta-aryne on Cu and NaCl surfaces. ACS Nano 11, 10768–10773 (2017).

  40. 40.

    Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotech. 12, 308–311 (2017).

  41. 41.

    Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

  42. 42.

    Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).

  43. 43.

    Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

  44. 44.

    Schendel, V. et al. Remotely controlled isomer selective molecular switching. Nano Lett. 16, 93–97 (2015).

  45. 45.

    Ladenthin, J. N. et al. Hot carrier-induced tautomerization within a single porphycene molecule on Cu(111). ACS Nano 9, 7287–7295 (2015).

  46. 46.

    Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

  47. 47.

    Moore, K. A., Vidaurri-Martinez, J. S. & Thamattoor, D. M. The benzylidenecarbene–phenylacetylene rearrangement: an experimental and computational study. J. Am. Chem. Soc. 134, 20037–20040 (2012).

  48. 48.

    Galli, C., Guarnieri, A., Koch, H., Mencarelli, P. & Rappoport, Z. Effect of substituents on the structure of the vinyl radical: calculations and experiments. J. Org. Chem. 62, 4072–4077 (1997).

  49. 49.

    Zhu, C., Duarte, L. & Khriachtchev, L. Matrix-isolation and computational study of H2CCCl and H2CCBr radicals. J. Chem. Phys. 145, 074312 (2016).

  50. 50.

    Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

Download references


The research leading to these results received funding from ERC Advanced Grants CEMAS (agreement no. 291194) and CoSuN (320969), ERC Consolidator Grant AMSEL (682144) and EU project PAMS (610446). P.G. acknowledges receipt of Postdoc.Mobility fellowships from the Swiss National Science Foundation. Y.X. was supported by the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) and by a University of Oxford Clarendon Fund Scholarship. The authors acknowledge use of the Oxford Advanced Research Computing (ARC) facility to carry out computational work (doi: 10.5281/zenodo.22558). The authors thank R.S. Paton and I. Gruebner for discussions on computational studies and A.L. Thompson for help with X-ray crystal structure refinements.

Author information

Author notes

    • Niko Pavliček

    Present address: ABB Corporate Research, Baden-Dättwil, Switzerland


  1. IBM Research – Zurich, Rüschlikon, Switzerland

    • Niko Pavliček
    • , Zsolt Majzik
    • , Gerhard Meyer
    •  & Leo Gross
  2. Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK

    • Przemyslaw Gawel
    • , Daniel R. Kohn
    • , Yaoyao Xiong
    •  & Harry L. Anderson


  1. Search for Niko Pavliček in:

  2. Search for Przemyslaw Gawel in:

  3. Search for Daniel R. Kohn in:

  4. Search for Zsolt Majzik in:

  5. Search for Yaoyao Xiong in:

  6. Search for Gerhard Meyer in:

  7. Search for Harry L. Anderson in:

  8. Search for Leo Gross in:


P.G. conceived the project. N.P., Z.M., G.M. and L.G. performed the STM/AFM experiments and analysis. P.G. and D.R.K. performed the organic synthesis. Y.X. measured and solved X-ray crystal structures. H.L.A. contributed to the design of the study. All authors analysed the results and contributed to the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Przemyslaw Gawel or Harry L. Anderson or Leo Gross.

Supplementary information

  1. Supplementary information

    Supplementary details about the synthesis and analysis of dibromoolefins, crystallographic information and extensive information on computational studies and additional surface experiments

  2. Crystallographic data

    CIF for compound 6Br4; CCDC reference: 1567547

  3. Crystallographic data

    Structure factors for compound 6Br4; CCDC reference: 1567547

  4. Crystallographic data

    CIF for compound 7Br4; CCDC reference: 1567546

  5. Crystallographic data

    Structure factors for compound 7Br4; CCDC reference: 1567546

  6. Crystallographic data

    CIF for compound 8Br4; CCDC reference: 1567548

  7. Crystallographic data

    Structure factors for compound 8Br4; CCDC reference: 1567548

  8. Calculated Cartesian coordinates

    Cartesian coordinates of geometries for all calculated structures

About this article

Publication history