Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals

Abstract

Biaryls are ubiquitous core structures in drugs, agrochemicals and organic materials that have profoundly improved many aspects of our society. Although traditional cross-couplings have made practical the synthesis of many biaryls, C–H arylation represents a more attractive and cost-effective strategy for building these structural motifs. Furthermore, the ability to install biaryl units in complex molecules via late-stage C–H arylation would allow access to valuable structural diversity, novel chemical space and intellectual property in only one step. However, known C–H arylation protocols are not suitable for substrates decorated with polar and delicate functionalities, which are commonly found in molecules that possess biological activity. Here we introduce a class of ruthenium catalysts that display a unique efficacy towards late-stage arylation of heavily functionalized substrates. The design and development of this class of catalysts was enabled by a mechanistic breakthrough on the Ru(ii)-catalysed C–H arylation of N–chelating substrates with aryl (pseudo)halides, which has remained poorly understood for nearly two decades.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ru(ii)-catalysed C–H arylation of DG-containing arenes with aryl (pseudo)halides.
Fig. 2: Kinetic evidence that supports the involvement of a bis-cycloruthenated intermediate in the Ru-catalysed C–H arylation of DG-containing arenes with aryl (pseudo)halides.
Fig. 3: Detection, isolation and reactivity of the bis-cycloruthenated complex Ru5.
Fig. 4: Cycloruthenated complexes as a superior class of catalysts for the C–H arylation of DG-containing arenes with aryl (pseudo)halides.
Fig. 5: Substrate scope of the C–H arylation with respect to the aryl (pseudo)halide-containing drugs.
Fig. 6: Substrate scope of the C–H arylation with respect to the DG-containing drugs and C–H arylation between DG-containing drugs and aryl (pseudo)halide-containing drugs.

Similar content being viewed by others

References

  1. Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  Google Scholar 

  3. Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    Article  CAS  Google Scholar 

  4. Robichaud, J. et al. A novel class of nonpeptidic biaryl inhibitors of human cathepsin K. J. Med. Chem. 46, 3709–3727 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Liang, X., Lee, C.-L., Zhao, J., Toone, E. J. & Zhou, P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J. Med. Chem. 56, 6954–6966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer, C. et al. Improvement of σ1 receptor affinity by late-stage C–H-bond arylation of spirocyclic lactones. Bioorg. Med. Chem. 21, 1844–1856 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kokornaczyk, A., Schepmann, D., Yamaguchi, Y., Itami, K. & Wünsch, B. Microwave-assisted regioselective direct C–H arylation of thiazole derivatives leading to increased σ1 receptor affinity. Med. Chem. Commun. 7, 327–331 (2016).

    Article  CAS  Google Scholar 

  8. Ward, S. E. & Beswick, P. What does the aromatic ring number mean for drug design? Expert Opin. Drug Discov. 9, 995–1003 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Ritchie, T. J. & Macdonald, S. J. F. The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design? Drug. Discov. Today 14, 1011–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Ritchie, T. J., Macdonald, S. J. F., Young, R. J. & Pickett, S. D. The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug. Discov. Today 16, 164–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Barker, A., Kettle, J. G., Nowak, T. & Pease, J. E. Expanding medicinal chemistry space. Drug. Discov. Today 18, 298–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Simonetti, M., Cannas, D. M. & Larrosa, I. Biaryl synthesis via C–H bond activation: strategies and methods. Adv. Organomet. Chem. 67, 299–399 (2017).

    Article  Google Scholar 

  14. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachalb, P. & Krskab, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  17. Beck, M. B., Stepan, A. F. & Webb, D. in Synthetic Methods in Drug Discovery (eds Blakemore, C. D., Doyle, P. M. & Fobian, Y.) Vol. 1, 274–283 (Royal Society of Chemistry, Cambridge, 2016).

  18. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, B. R., Eastman, C. M. & Njardarson, J. T. Beyond C, H, O, and N! Analysis of the elemental composition of US FDA approved drug architectures. J. Med. Chem. 57, 9764–9773 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Ilardi, E. A., Vitaku, E. & Njardarson, J. T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 57, 2832–2842 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. 51, 1114–1122 (2012).

    Article  CAS  Google Scholar 

  23. Busacca, C. A., Fandrick, D. R., Song, J. J. & Senanayake, C. H. in Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective (eds Crawley, M. L. & Tost, B. M.) 1–25 (Wiley, New York, 2012).

  24. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Malik, H. A. et al. Non-directed allylic C–H acetoxylation in the presence of Lewis basic heterocycles. Chem. Sci. 5, 2352–2361 (2013).

    Article  CAS  Google Scholar 

  26. Liu, Y.-J. et al. Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature 515, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, D. G., Gagnon, M. M. & Boström, J. Understanding our love affair with p-chlorophenyl: present day implications from historical biases of reagent selection. J. Med. Chem. 58, 2390–2405 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Kalyani, D., Deprez, N. R., Desai, L. V. & Sanford, M. S. Oxidative C–H activation/C–C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 127, 7330–7331 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Shabashov, D. & Daugulis, O. Catalytic coupling of C–H and C–I bonds using pyridine as a directing group. Org. Lett. 7, 3657–3659 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Chiong, H. A., Pham, Q.-N. & Daugulis, O. Two methods for direct ortho-arylation of benzoic acids. J. Am. Chem. Soc. 129, 9879–9884 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Arroniz, C., Denis, J. G., Ironmonger, A., Rassias, G. & Larrosa, I. An organic cation as a silver(i) analogue for the arylation of sp 2 and sp 3 C–H bonds with iodoarenes. Chem. Sci. 5, 3509–3514 (2014).

    Article  CAS  Google Scholar 

  32. Ding, Y.-J., Dai, S.-Y., Lana, Q. & Wang, X.-S. Pd(ii)-catalyzed, controllable C–H mono-/diarylation of aryl tetrazoles: concise synthesis of losartan. Org. Biomol. Chem. 13, 3198–3201 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Khan, R. et al. Late stage C–H activation of a privileged scaffold; synthesis of a library of benzodiazepines. Adv. Synth. Catal. 358, 98–109 (2016).

    Article  CAS  Google Scholar 

  34. Nareddy, P., Jordan, F. & Szostak, M. Recent developments in ruthenium-catalyzed C–H arylation: array of mechanistic manifolds. ACS Catal. 7, 5721–5745 (2017).

    Article  CAS  Google Scholar 

  35. Oi, S. et al. Ruthenium complex-catalyzed direct ortho arylation and alkenylation of 2-arylpyridines with organic halides. Org. Lett. 3, 2579–2581 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ackermann, L. Phosphine oxides as preligands in ruthenium-catalyzed arylations via C–H bond functionalization using aryl chlorides. Org. Lett. 7, 3123–3125 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ackermann, L., Althammer, A. & Born, R. Catalytic arylation reactions by C–H bond activation with aryl tosylates. Angew. Chem. Int. Ed. 45, 2619–2622 (2006).

    Article  CAS  Google Scholar 

  38. Özdemir, I. et al. Direct arylation of arene C–H bonds by cooperative action of NHcarbene–ruthenium(ii) catalyst and carbonate via proton abstraction mechanism. J. Am. Chem. Soc. 130, 1156–1157 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ackermann, L., Vicente, R. SpringerAmpamp; Althammer, A. Assisted ruthenium-catalyzed C–H bond activation: carboxylic acids as cocatalysts for generally applicable direct arylations in apolar solvents. Org. Lett. 10, 2299–2302 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Arockiam, P. B., Fischmeister, C., Bruneau, C. & Dixneuf, P. H. C–H bond functionalization in water catalyzed by carboxylato ruthenium(ii) systems. Angew. Chem. Int. Ed. 49, 6629–6632 (2010).

    Article  CAS  Google Scholar 

  41. Ferrer Flegeau, E., Bruneau, C., Dixneuf, P. H. & Jutand, A. Autocatalysis for C–H bond activation by ruthenium(ii) complexes in catalytic arylation of functional arenes. J. Am. Chem. Soc. 133, 10161–10170 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kuzman, P., Požgan, F., Meden, A., Svete, J. & Bogdan, Š. Synthesis and reactivity of 2-arylquinazoline halidoruthenacycles in arylation reactions. Chem. Cat. Chem. 9, 3380–3387 (2017).

    CAS  Google Scholar 

  43. Cooper, T. W. J., Campbell, I. B. & Macdonald, J. F. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. 49, 8082–8091 (2010).

    Article  CAS  Google Scholar 

  44. Foley, D. J., Nelson, A. & Marsden, S. P. Evaluating new chemistry to drive molecular discovery: fit for purpose? Angew. Chem. Int. Ed. 55, 13650–13657 (2016).

    Article  CAS  Google Scholar 

  45. Simonetti, M. et al. Ru-catalyzed C–H arylation of fluoroarenes with aryl halides. J. Am. Chem. Soc. 138, 3596–3606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Ackermann, L., Vicente, R., Potukuchi, H. K. & Pirovano, V. Mechanistic insight into direct arylations with ruthenium(ii) carboxylate catalysts. Org. Lett. 12, 5032–5035 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC, EP/L014017/2 and EP/K039547/1) for funding and the European Research Council for a Starting Grant (to I.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and I.L. conceived the work and prepared the manuscript. M.S., D.M.C. and I.L. designed the experiments. M.S. and D.M.C. performed the experiments and analysed the data. X.J.-B., M.S. and D.M.C. prepared the Supplementary Information. I.J.V.-Y. acquired the X-ray of Ru5.

Corresponding author

Correspondence to Igor Larrosa.

Ethics declarations

Competing interests

A patent protecting the findings disclosed in this manuscript has been filed by the University of Manchester (application number 1807672.9).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures for the mechanistic studies; general procedures for the synthesis of ruthenium complexes, starting materials and new products; the experimental procedure for the 10 g-scale synthesis of A12; NMR characterization for the new products and X-ray crystallography data for Ru5

Crystallographic data

CIF for compound Ru5; CCDC reference: 1567316

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonetti, M., Cannas, D.M., Just-Baringo, X. et al. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nature Chem 10, 724–731 (2018). https://doi.org/10.1038/s41557-018-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0062-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing